Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Chemistry ; 30(28): e202303887, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38478740

ABSTRACT

Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded ß-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.


Subject(s)
Islet Amyloid Polypeptide , Triazoles , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Humans , Triazoles/chemistry , Molecular Dynamics Simulation , Halogenation , Protein Aggregates
2.
Angew Chem Int Ed Engl ; 63(12): e202316056, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38345287

ABSTRACT

To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.


Subject(s)
Nanoparticles , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Polymers , Drug Delivery Systems/methods , Nanoparticles/chemistry , Gemcitabine , Drug Liberation , Cell Line, Tumor
3.
Chemistry ; 30(1): e202302669, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37823686

ABSTRACT

Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ was lowered by ∼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACN⋅Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.

4.
J Med Chem ; 66(17): 12005-12017, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37632446

ABSTRACT

A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid ß (Aß) cross-interaction, and to decrease pathological Aß aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.


Subject(s)
Alzheimer Disease , Dermatitis , Peptidomimetics , Humans , Amyloid beta-Peptides , Molecular Chaperones , Amyloidogenic Proteins , Circular Dichroism , Peptidomimetics/pharmacology
5.
Bioorg Chem ; 139: 106731, 2023 10.
Article in English | MEDLINE | ID: mdl-37480815

ABSTRACT

Over the past decades, many cell-penetrating peptides (CPP) have been studied for their capacity to cross cellular membranes, mostly in order to improve cellular uptake of therapeutic agents. Even though hydrophobic and anionic CPPs have been described, many of them are polycationic, due to the presence of several arginine (Arg) residues. Noteworthy, however, the presence of aromatic amino acids such as tryptophan (Trp) within CPPs seems to play an important role to reach high membranotropic activity. RW9 (RRWWRRWRR) is a designed CPP derived from the polyarginine R9 presenting both features. In general, when interacting with membranes, CPPs adopt an optimal conformation for membrane interactions - an amphipathic helical secondary structure in the case of RW9. Herein, we assumed that the incorporation of a locally constrained amino acid in the peptide sequence could improve the membranotropic activity of RW9, by facilitating its structuration upon contact with a membrane, while leaving a certain plasticity. Therefore, two cyclized Trp derivatives (Tcc and Aia) were synthesized to be incorporated in RW9 as surrogates of Trp residues. Thus, a series of peptides containing these building blocks has been synthesized by varying the type, position, and number of modifications. The membranotropic activity of the RW9 analogs was studied by spectrofluorescence titration of the peptides in presence of liposomes (DMPG), allowing to calculate partition coefficients (Kp). Our results indicate that the partitioning of the modified peptides depends on the type, the number and the position of the modification, with the best sequence being [Aia4]RW9. Interestingly, both NMR analysis and molecular dynamic (MD) simulations indicate that this analog presents an extended conformation similar to the native RW9, but with a much-reduced structural flexibility. Finally, cell internalization properties were also confirmed by confocal microscopy.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Cell Membrane/metabolism , Amino Acid Sequence , Liposomes/chemistry , Molecular Dynamics Simulation
6.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902455

ABSTRACT

The early characterization of drug membrane permeability is an important step in pharmaceutical developments to limit possible late failures in preclinical studies. This is particularly crucial for therapeutic peptides whose size generally prevents them from passively entering cells. However, a sequence-structure-dynamics-permeability relationship for peptides still needs further insight to help efficient therapeutic peptide design. In this perspective, we conducted here a computational study for estimating the permeability coefficient of a benchmark peptide by considering and comparing two different physical models: on the one hand, the inhomogeneous solubility-diffusion model, which requires umbrella-sampling simulations, and on the other hand, a chemical kinetics model which necessitates multiple unconstrained simulations. Notably, we assessed the accuracy of the two approaches in relation to their computational cost.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Lipid Bilayers/chemistry , Cell Membrane Permeability , Diffusion , Peptides , Permeability
7.
Biophys Chem ; 296: 106987, 2023 05.
Article in English | MEDLINE | ID: mdl-36898348

ABSTRACT

Many protein-protein interactions result from the binding of one folded protein with one short peptide segment, such as complexes formed by SH3 or PDZ domains. These transient protein-peptide interactions are notably involved in cellular signaling pathways and generally have low affinities, which opens the possibility to design competitive inhibitors of these complexes. We present and assess here our computational approach, called Des3PI, to design de novo cyclic peptides with potential high affinity for protein surfaces involved in interactions with peptide segments. The results were not conclusive for two receptors, the αVß3 integrin and the CXCR4 chemokine receptor, but were promising in the case of SH3 and PDZ domains: For the former, Des3PI was able to find at least one cyclic sequence with six hotspots that binds a SH3 domain with a better theoretical affinity to the known proline-rich RLP2 peptide. For the latter, Des3PI could identify at least four cyclic sequences with four or five hotspots that have lower binding free energies computed by the MM-PBSA method than the reference peptide GKAP.


Subject(s)
Peptides, Cyclic , Peptides , Amino Acid Sequence , Peptides, Cyclic/metabolism , Protein Binding , Peptides/chemistry , Membrane Proteins/metabolism , src Homology Domains , Binding Sites
8.
J Comput Aided Mol Des ; 36(8): 605-621, 2022 08.
Article in English | MEDLINE | ID: mdl-35932404

ABSTRACT

Protein-protein interactions (PPIs) play crucial roles in many cellular processes and their deregulation often leads to cellular dysfunctions. One promising way to modulate PPIs is to use peptide derivatives that bind their protein target with high affinity and high specificity. Peptide modulators are often designed using secondary structure mimics. However, fragment-based design is an alternative emergent approach in the PPI field. Most of the reported computational fragment-based libraries targeting PPIs are composed of small molecules or already approved drugs, but, according to our knowledge, no amino acid based library has been reported yet. In this context, we developed a novel fragment-based approach called Des3PI (design of peptides targeting protein-protein interactions) with a library composed of natural amino acids. All the amino acids are docked into the target surface using Autodock Vina. The resulting binding modes are geometrically clustered, and, in each cluster, the most recurrent amino acids are identified and form the hotspots that will compose the designed peptide. This approach was applied on Ras and Mcl-1 proteins, as well as on A[Formula: see text] protofibril. For each target, at least five peptides generated by Des3PI were tested in silico: the peptides were first blindly docked on their target, and then, the stability of the successfully docked complexes was verified using 200 ns MD simulations. Des3PI shows very encouraging results by yielding at least 3 peptides for each protein target that succeeded in passing the two-step assessment.


Subject(s)
Peptides, Cyclic , Proteins , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Peptides/chemistry , Protein Binding , Protein Structure, Secondary , Proteins/chemistry
9.
Methods Mol Biol ; 2405: 205-230, 2022.
Article in English | MEDLINE | ID: mdl-35298816

ABSTRACT

Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.


Subject(s)
Peptides , Proteins , Biophysical Phenomena , Ligands , Peptides/chemistry , Peptides/pharmacology , Proteins/chemistry
10.
Front Cell Dev Biol ; 9: 729001, 2021.
Article in English | MEDLINE | ID: mdl-34604227

ABSTRACT

Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in ß-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid ß peptide (Aß1-42) as a successful strategy to inhibit its aggregation involved in Alzheimer's disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic ß-hairpin like structures built on a piperidine-pyrrolidine ß-turn inducer are described. By linking to this ß-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.

11.
J Am Chem Soc ; 143(42): 17412-17423, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34644073

ABSTRACT

Drug-polymer conjugates that can self-assemble into nanoparticles are promising drug delivery systems that improve the drug bioavailability and allow their controlled release. However, despite the possibility of reaching high drug loadings, the efficiency of the drug release, mediated by cleavage of the drug-polymer linker, is a key parameter to obtain significant anticancer activity. To overcome the limitations of experimental characterizations and to gain a better understanding of such systems, we conducted a coarse-grained molecular dynamics simulation study on four representative drug-polymer conjugates obtained by the "drug-initiated" method and studied their supramolecular organization upon self-assembly. The prodrugs were composed of either a gemcitabine or a paclitaxel anticancer drug, either a propanoate or a diglycolate linker, and a polyisoprene chain. Our simulations gave crucial information concerning the spatial organization of the different components (e.g., drug, linker, polymer, etc.) into the nanoparticles and revealed that the linkers are not fully accessible to the solvent. Notably, some cleavage sites were either poorly hydrated or partially solvated. These observations might account for the low efficiency of drug release from the nanoparticles, particularly when the linker is too short and/or not hydrophilic/solvated enough. We believe that our theoretical study could be adapted to other types of polymer prodrugs and could guide the design of new polymer prodrug nanoparticles with improved drug release efficiency.


Subject(s)
Deoxycytidine/analogs & derivatives , Drug Carriers/chemistry , Nanoparticles/chemistry , Paclitaxel/analogs & derivatives , Polymers/chemistry , Prodrugs/chemistry , Deoxycytidine/chemistry , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Gemcitabine
12.
J Chem Theory Comput ; 17(7): 4499-4511, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34101464

ABSTRACT

Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.

13.
Chempluschem ; 86(2): 241-251, 2021 02.
Article in English | MEDLINE | ID: mdl-33555641

ABSTRACT

The Ministère de l'Enseignement Supérieur et de la Recherche (MESR) is thanked for financial support for José Laxio Arenas. The China Scholarship Council is thanked for financial support for Yaochun Xu. The authors thank Pr. Vadim Soloshonok and TOSOH F-TECH, Inc. for the kind gift of N-terbutyl-sulfinylimine.

14.
J Struct Biol ; 212(1): 107573, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32679070

ABSTRACT

DciA is a newly discovered bacterial protein involved in loading the replicative helicase DnaB onto DNA at the initiation step of chromosome replication. Its three-dimensional structure is composed of a folded N-terminal domain (residues 1-111) resembling K Homology domains and a long disordered C-terminal tail (residues 112-157) which structure-activity relationship remains to be elucidated. In the present study on Vibrio cholerae DciA, we emphasize the importance of its disordered region to load DnaB onto DNA using surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). Then we characterize the conformational ensemble of the full-length protein using a combination of circular dichroism (CD), small angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The atomic-level structural ensemble generated by MD simulations is in very good agreement with SAXS data. From initial conformations of the C-terminal tail without any secondary structure, our simulations bring to light several transient helical structures in this segment, which might be molecular recognition features (MoRFs) for the binding to DnaB and its recruitment and loading onto DNA.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA/metabolism , DnaB Helicases/chemistry , DnaB Helicases/metabolism , Molecular Dynamics Simulation , Protein Structure, Secondary , Scattering, Small Angle , Structure-Activity Relationship , Vibrio cholerae/metabolism , X-Ray Diffraction/methods
15.
Int J Mol Sci ; 20(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514372

ABSTRACT

Cellular regulation or signaling processes are mediated by many proteins which often have one or several intrinsically disordered regions (IDRs). These IDRs generally serve as binders to different proteins with high specificity. In many cases, IDRs undergo a disorder-to-order transition upon binding, following a mechanism between two possible pathways, the induced fit or the conformational selection. Since these mechanisms contribute differently to the kinetics of IDR associations, it is important to investigate them in order to gain insight into the physical factors that determine the biomolecular recognition process. The verprolin homology domain (V) of the Neural Wiskott-Aldrich Syndrome Protein (N-WASP), involved in the regulation of actin polymerization, is a typical example of IDR. It is composed of two WH2 motifs, each being able to bind one actin molecule. In this study, we investigated the early steps of the recognition process of actin by the WH2 motifs of N-WASP domain V. Using docking calculations and molecular dynamics simulations, our study shows that actin is first recognized by the N-WASP domain V regions which have the highest propensity to form transient α -helices. The WH2 motif consensus sequences "LKKV" subsequently bind to actin through large conformational changes of the disordered domain V.


Subject(s)
Actins/metabolism , Wiskott-Aldrich Syndrome Protein/chemistry , Wiskott-Aldrich Syndrome Protein/metabolism , Actins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Probability , Protein Domains , Protein Multimerization , Time Factors
16.
Article in English | MEDLINE | ID: mdl-31214516

ABSTRACT

Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Development , Leishmania/drug effects , Leishmaniasis/drug therapy , Nucleotidyltransferases/antagonists & inhibitors , Computational Biology , Drug Design , Glycoconjugates , Humans , Leishmania/metabolism , Models, Molecular , Nucleotidyltransferases/metabolism
17.
J Chem Inf Model ; 59(5): 1743-1758, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30840442

ABSTRACT

The concept of intrinsically disordered proteins (IDPs) has emerged relatively slowly, but over the past 20 years, it has become an intense research area in structural biology. Indeed, because of their considerable flexibility and structural heterogeneity, the determination of IDP conformational ensemble is particularly challenging and often requires a combination of experimental measurements and computational approaches. With the improved accuracy of all-atom force fields and the increasing computing performances, molecular dynamics (MD) simulations have become more and more reliable to generate realistic conformational ensembles. And the combination of MD simulations with experimental approaches, such as nuclear magnetic resonance (NMR) and/or small-angle X-ray scattering (SAXS) allows one to converge toward a more accurate and exhaustive description of IDP structures. In this Review, we discuss the state of the art of MD simulations of IDP conformational ensembles, with a special focus on studies that back-calculated and directly compared theoretical and experimental NMR or SAXS observables, such as chemical shifts (CS), 3J-couplings (3Jc), residual dipolar couplings (RDC), or SAXS intensities. We organize the review in three parts. In the first section, we discuss the studies which used NMR and/or SAXS data to test and validate the development of force fields or enhanced sampling techniques. In the second part, we explore different methods for the refinement of MD-derived structural ensembles, such as NMR or SAXS data-restrained MD simulations or ensemble reweighting to better fit experiments. Finally, we survey some recent studies combining MD simulations with NMR and/or SAXS measurements to investigate the relationship between IDP conformational ensemble and biological activity, as well as their implication in human diseases. From this review, we noticed that quite a few studies compared MD-generated conformational ensembles with both NMR and SAXS measurements to validate IDP structures at both local and global levels. Yet, beside the IDP propensity to form local secondary structures, their dynamic extension or compactness also appears important for their activity. Thus, we believe that a close synergy between MD simulations, NMR, and SAXS experiments would be greatly appropriate to address the challenges of characterizing the disordered structures of proteins and their complexes, relative to their biological functions.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Peptides/chemistry , Amyloidogenic Proteins/chemistry , Animals , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Scattering, Small Angle , Viral Proteins/chemistry , X-Ray Diffraction
18.
Biophys J ; 116(7): 1216-1227, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30878202

ABSTRACT

Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Wiskott-Aldrich Syndrome Protein/chemistry , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Domains , Scattering, Small Angle , X-Ray Diffraction
19.
ACS Chem Neurosci ; 9(11): 2859-2869, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30025208

ABSTRACT

We recently reported that a glycopeptidomimetic molecule significantly delays the fibrillization process of Aß42 peptide involved in Alzheimer's disease. However, the binding mode of this compound, named 3ß, was not determined at the atomic scale, hindering our understanding of its mechanism of action and impeding structure-based design of new inhibitors. In the present study, we performed molecular docking calculations and molecular dynamics simulations to investigate the most probable structures of 3ß complexed with Aß protofibrils. Our results show that 3ß preferentially binds to an area of the protofibril surface that coincides with the protofibril dimerization interface observed in the solid-state NMR structure 5KK3 from the PDB. Based on these observations, we propose a model of the inhibition mechanism of Aß fibrillization by compound 3ß.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Glycopeptides/chemistry , Peptide Fragments/metabolism , Peptidomimetics/chemistry , Amyloid/drug effects , Amyloid beta-Peptides/chemistry , Glycopeptides/pharmacology , Humans , Magnetic Resonance Imaging , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptidomimetics/pharmacology , Protein Binding
20.
Eur J Med Chem ; 154: 280-293, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29807333

ABSTRACT

Aggregation of amyloid proteins is currently involved in more than 20 serious human diseases that are actually untreated, such as Alzheimer's disease (AD). Despite many efforts made to target the amyloid cascade in AD, finding an aggregation inhibiting compound and especially modulating early oligomerization remains a relevant and challenging strategy. We report herein the first examples of small and non-peptide mimics of acyclic beta-hairpins, showing an ability to delay the fibrillization of amyloid-ß (Aß1-42) peptide and deeply modify its early oligomerization process. Modifications providing better druggability properties such as increased hydrophilicity and reduced peptidic character were performed. We also demonstrate that an appropriate balance between flexibility and stability of the ß-hairpin must be reached to adapt to the different shape of the various aggregated forms of the amyloid peptide. This strategy can be investigated to target other challenging amyloid proteins.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Piperidines/pharmacology , Small Molecule Libraries/pharmacology , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Protein Aggregates/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL