Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491565

ABSTRACT

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Phys Rev E ; 108(5): L053203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115512

ABSTRACT

Inertial confinement fusion ignition requires high inflight shell velocity, good energy coupling between the hotspot and shell, and high areal density at peak compression. Three-dimensional asymmetries caused by imperfections in the drive symmetry or target can grow and damage the coupling and confinement. Recent high-yield experiments have shown that low-mode asymmetries are a key degradation mechanism and contribute to variability. We show the experimental signatures and impacts of asymmetry change with increasing implosion yield given the same initial cause. This letter has implications for improving robustness to a key degradation in ignition experiments.

3.
Nat Commun ; 14(1): 4251, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460545

ABSTRACT

Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Cancer-Associated Fibroblasts/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fibroblasts/pathology , Immune Tolerance , Immunosuppression Therapy , Tumor Microenvironment , Cell Proliferation , Receptors, Interleukin-1 Type I/genetics
4.
Phys Rev E ; 106(2-2): 025202, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109932

ABSTRACT

An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by ∼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (∼3×), pressure (∼2×), and mass (∼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.

5.
Phys Rev E ; 106(2-2): 025201, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110025

ABSTRACT

We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a ∼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."

6.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36638294

ABSTRACT

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

7.
Phys Rev Lett ; 126(2): 025002, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33512229

ABSTRACT

Inertial confinement fusion implosions must achieve high in-flight shell velocity, sufficient energy coupling between the hot spot and imploding shell, and high areal density (ρR=∫ρdr) at stagnation. Asymmetries in ρR degrade the coupling of shell kinetic energy to the hot spot and reduce the confinement of that energy. We present the first evidence that nonuniformity in the ablator shell thickness (∼0.5% of the total thickness) in high-density carbon experiments is a significant cause for observed 3D ρR asymmetries at the National Ignition Facility. These shell-thickness nonuniformities have significantly impacted some recent experiments leading to ρR asymmetries on the order of ∼25% of the average ρR and hot spot velocities of ∼100 km/s. This work reveals the origin of a significant implosion performance degradation in ignition experiments and places stringent new requirements on capsule thickness metrology and symmetry.

8.
Phys Rev Lett ; 122(25): 255702, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347873

ABSTRACT

We present laser-driven shock compression experiments on cryogenic liquid deuterium to 550 GPa along the principal Hugoniot and reflected-shock data up to 1 TPa. High-precision interferometric Doppler velocimetry and impedance-matching analysis were used to determine the compression accurately enough to reveal a significant difference as compared to state-of-the-art ab initio calculations and thus, no single equation of state model fully matches the principal Hugoniot of deuterium over the observed pressure range. In the molecular-to-atomic transition pressure range, models based on density functional theory calculations predict the maximum compression accurately. However, beyond 250 GPa along the principal Hugoniot, first-principles models exhibit a stiffer response than the experimental data. Similarly, above 500 GPa the reflected shock data show 5%-7% higher compression than predicted by all current models.

9.
Phys Rev Lett ; 120(24): 245003, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956968

ABSTRACT

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10^{16} (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm^{2}) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment.

10.
Brain Imaging Behav ; 12(3): 912-916, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28664231

ABSTRACT

Magnetic resonance imaging (MRI) is often performed in patients with persistent complaints after mild traumatic brain injury (mTBI). However, the clinical relevance of detected microhemorrhagic lesions is still unclear. In the current study, 54 patients with uncomplicated mTBI and 20 matched healthy controls were included. Post-traumatic complaints were measured at two weeks post-injury. Susceptibility weighted imaging and T2*-gradient echo imaging (at 3 Tesla) were performed at four weeks post-injury. Microhemorrhagic lesions (1-10 mm) were subdivided based on depth (superficial or deep) and anatomical location (frontal, temporoparietal and other regions). Twenty-eight per cent of patients with mTBI had ≥1 lesions compared to 0 % of the healthy controls. Lesions in patients with mTBI were predominantly located within the superficial frontal areas. Number, depth and anatomical location of lesions did not differ between patients with and without post-traumatic complaints. Within the group of patients with complaints, number of complaints was not correlated with number of lesions. In summary, microhemorrhages were found in one out of four patients with uncomplicated mTBI during follow-up at four weeks post-injury, but they were not related to early complaints.


Subject(s)
Brain Concussion/complications , Brain Concussion/drug therapy , Brain/diagnostic imaging , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Magnetic Resonance Imaging , Adolescent , Adult , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Young Adult
11.
Neuroradiology ; 59(10): 963-969, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28785801

ABSTRACT

PURPOSE: In the chronic phase after mild traumatic brain injury (mTBI), microhaemorrhages are frequently detected on magnetic resonance imaging (MRI). It is however unclear whether microhaemorrhages are associated with functional outcome and which MRI sequence is most appropriate to address this association. We aimed to determine the association between microhaemorrhages and functional outcome in the chronic posttraumatic phase after injury with the most suitable MRI sequence to address this association. METHODS: One hundred twenty-seven patients classified with mTBI admitted to the outpatient clinic from 2008 to 2015 for persisting posttraumatic complaints were stratified according to the presence of MRI abnormalities (n = 63 (MRI+ group) and n = 64 without abnormalities (MRI- group)). For the detection of microhaemorrhages, susceptibility-weighted imaging (SWI) and T2* gradient recalled echo (T2*GRE) were used. The relation between the functional outcome (dichotomized Glasgow Outcome Scale Extended scores) and the number and localization of microhaemorrhages was analysed using binary logistic regression. RESULTS: SWI detected twice as many microhaemorrhages compared to T2*GRE: 341 vs. 179. Lesions were predominantly present in the frontal and temporal lobes. Unfavourable outcome was present in 67% of the MRI+ group with a significant association of total number of microhaemorrhages in the temporal cortical area on SWI (OR 0.43 (0.21-0.90) p = 0.02), with an explained variance of 44%. The number of microhaemorrhages was not correlated with the number of posttraumatic complaints. CONCLUSION: An unfavourable outcome in the chronic posttraumatic phase is associated with the presence and number of microhaemorrhages in the temporal cortical area. SWI is preferably used to detect these microhaemorrhages.


Subject(s)
Brain Concussion/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Chronic Disease , Female , Glasgow Coma Scale , Glasgow Outcome Scale , Humans , Male , Middle Aged , Recovery of Function , Retrospective Studies
13.
Phys Rev E ; 95(3-1): 031204, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415208

ABSTRACT

Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ∼2 using in-flight x-ray radiography. The initial seed due to shadow imprint is estimated to be equivalent to ∼50-100 nm of solid ablator material. This discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.

14.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26382681

ABSTRACT

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

15.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26274424

ABSTRACT

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

16.
Phys Rev Lett ; 114(17): 175001, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978240

ABSTRACT

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×.

17.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910132

ABSTRACT

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

18.
Schizophr Res ; 159(2-3): 441-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25239127

ABSTRACT

BACKGROUND: Early visual impairments probably partially caused by impaired interactions between magnocellular (M) and parvocellular (P) pathways (M priming deficit), and disturbances of basic self-awareness or self-disorders (SDs) are core features of schizophrenia. The relationships between these features have not yet been studied. We hypothesized that the M priming was impaired in first-episode patients and that this deficit was associated with visual aspects of SDs. AIM: To investigate early visual processing in a sample of first-episode schizophrenia patients and to explore the relationships between M and P functioning and visual aspects of SDs addressed by the Examination of Anomalous Self-Experience (EASE) interview. METHOD: Nine stimulating conditions were used to investigate M and P pathways and their interaction in a pattern reversal visually evoked potential (VEP) paradigm. N80 at mixed M- and P-conditions was used to investigate magnocellular priming. Generators were analyzed using source localization (Brain Electrical Source Analysis software: BESA). VEPs of nineteen first-episode schizophrenia patients were compared to those of twenty matched healthy controls by a bootstrap resample procedure. Visual aspects of SDs were analyzed through a factor analysis to separate symptom clusters of derealization phenomena. Thereafter, the associations between the main factors and the N80 component were explored using linear mixed models. RESULTS: Factor analyses separated two EASE factors ("distance to the world", and "intrusive world"). The N80 component was represented by a single dipole located in the occipital visual cortex. The bootstrap analysis yielded significant amplitude reductions and prolonged latencies in first-episode patients relative to controls in response to mixed M-P conditions, and normal amplitudes and latencies in response to isolated P- and M-biased stimulation. Exploratory analyses showed significant negative correlations between the N80 amplitude values at mixed M-P conditions and the EASE factor "distance to the world", i.e. relatively higher amplitudes in the patient group were associated with higher subjective perceived derealization ("distance to the world"). CONCLUSIONS: The early VEP component N80 evoked by mixed M-P conditions is assumed to be a correlate of M priming, and showed reduced amplitudes and longer latencies in first-episode patients. It probably reflects a hypoactivation of the M-pathway. The negative association between visual SDs (derealization phenomena characterized by visual experiences of being more distant to the world), and the M priming deficit was counterintuitive. It might indicate a dysregulated activity of the M-pathway in patients with SDs. Further research is needed to better understand this preliminary finding.


Subject(s)
Depersonalization/physiopathology , Evoked Potentials, Visual/physiology , Geniculate Bodies/physiopathology , Schizophrenia/physiopathology , Visual Pathways/physiopathology , Adolescent , Adult , Depersonalization/etiology , Female , Humans , Male , Repetition Priming/physiology , Schizophrenia/complications , Self Report , Young Adult
19.
Neth Heart J ; 22(10): 449-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25187012

ABSTRACT

OBJECTIVE: Implantable cardioverter defibrillators (ICD) and cardiac resynchronisation therapy (CRT) have substantially improved the survival of patients with cardiomyopathy. Eligibility for this therapy requires a left ventricular ejection fraction (LVEF) <35 %. This is largely based on studies using echocardiography. Cardiac magnetic resonance imaging (CMR) is increasingly utilised for LVEF assessment, but several studies have shown differences between LVEF assessed by CMR and echocardiography. The present study compared LVEF assessment by CMR and echocardiography in a heart failure population and evaluated effects on eligibility for device therapy. METHODS: 152 patients (106 male, mean age 65.5 ± 9.9 years) referred for device therapy were included. During evaluation of eligibility they underwent both CMR and echocardiographic LVEF assessment. CMR volumes were computed from a stack of short-axis images. Echocardiographic volumes were computed using Simpson's biplane method. RESULTS: The study population demonstrated an underestimation of end-diastolic volume (EDV) and end-systolic volume (ESV) by echocardiography of 71 ± 53 ml (mean ± SD) and 70 ± 49 ml, respectively. This resulted in an overestimation of LVEF of 6.6 ± 8.3 % by echocardiography compared with CMR (echocardiographic LVEF 31.5 ± 8.7 % and CMR LVEF 24.9 ± 9.6 %). 28 % of patients had opposing outcomes of eligibility for cardiac device therapy depending on the imaging modality used. CONCLUSION: We found EDV and ESV to be underestimated by echocardiography, and LVEF assessed by CMR to be significantly smaller than by echocardiography. Applying an LVEF cut-off value of 35 %, CMR would significantly increase the number of patients eligible for device implantation. Therefore, LVEF cut-off values might need reassessment when using CMR.

20.
Article in English | MEDLINE | ID: mdl-25122242

ABSTRACT

Hydrodynamic instabilities are a major obstacle in the quest to achieve ignition as they cause preexisting capsule defects to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility. Unstable growth at the ablation front has been dramatically reduced in implosions with "high-foot" drives as measured using x-ray radiography of modulations at the most dangerous wavelengths (Legendre mode numbers of 30-90). These growth reductions have helped to improve the performance of layered DT implosions reported by O. A. Hurricane et al. [Nature (London) 506, 343 (2014)], when compared to previous "low-foot" experiments, demonstrating the value of stabilizing ablation-front growth and providing directions for future ignition designs.


Subject(s)
Deuterium/chemistry , Hydrodynamics , Nuclear Fusion , Tritium/chemistry , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...