Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neurocrit Care ; 38(3): 688-697, 2023 06.
Article in English | MEDLINE | ID: mdl-36418766

ABSTRACT

BACKGROUND: Microglia are a primary mediator of the neuroinflammatory response to neurologic injury, such as that in traumatic brain injury. Their response includes changes to their cytokine expression, metabolic profile, and immunophenotype. Dexmedetomidine (DEX) is an α2 adrenergic agonist used as a sedative in critically ill patients, such as those with traumatic brain injury. Given its pharmacologic properties, DEX may alter the phenotype of inflammatory microglia. METHODS: Primary microglia were isolated from Sprague-Dawley rats and cultured. Microglia were activated using multiple mediators: lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (Poly I:C), and traumatic brain injury damage-associated molecular patterns (DAMP) from a rat that sustained a prior controlled cortical impact injury. After activation, cultures were treated with DEX. At the 24-h interval, the cell supernatant and cells were collected for the following studies: cytokine expression (tumor necrosis factor-α [TNFα], interleukin-10 [IL-10]) via enzyme-linked immunosorbent assay, 6-phosphofructokinase enzyme activity assay, and immunophenotype profiling with flow cytometry. Cytokine expression and metabolic enzyme activity data were analyzed using two-way analysis of variance. Cell surface marker expression was analyzed using FlowJo software. RESULTS: In LPS-treated cultures, DEX treatment decreased the expression of TNFα from microglia (mean difference = 121.5 ± 15.96 pg/mL; p < 0.0001). Overall, DEX-treated cultures had a lower expression of IL-10 than nontreated cultures (mean difference = 39.33 ± 14.50 pg/mL, p < 0.0001). DEX decreased IL-10 expression in LPS-stimulated microglia (mean difference = 74.93 ± 12.50 pg/mL, p = 0.0039) and Poly I:C-stimulated microglia (mean difference = 23.27 ± 6.405 pg/mL, p = 0.0221). In DAMP-stimulated microglia, DEX decreased the activity of 6-phosphofructokinase (mean difference = 18.79 ± 6.508 units/mL; p = 0.0421). The microglial immunophenotype was altered to varying degrees with different inflammatory stimuli and DEX treatment. CONCLUSIONS: DEX may alter the neuroinflammatory response of microglia. By altering the microglial profile, DEX may affect the progression of neurologic injury.


Subject(s)
Brain Injuries, Traumatic , Dexmedetomidine , Rats , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/metabolism , Dexmedetomidine/therapeutic use , Interleukin-10/metabolism , Interleukin-10/therapeutic use , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , Lipopolysaccharides/pharmacology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Brain Injuries, Traumatic/metabolism , Poly I/metabolism , Poly I/therapeutic use
2.
Mol Cancer Ther ; 21(9): 1449-1461, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35793453

ABSTRACT

Valine-citrulline is a protease-cleavable linker commonly used in many drug delivery systems, including antibody-drug conjugates (ADC) for cancer therapy. However, its suboptimal in vivo stability can cause various adverse effects such as neutropenia and hepatotoxicity, leading to dose delays or treatment discontinuation. Here, we report that glutamic acid-glycine-citrulline (EGCit) linkers have the potential to solve this clinical issue without compromising the ability of traceless drug release and ADC therapeutic efficacy. We demonstrate that our EGCit ADC resists neutrophil protease-mediated degradation and spares differentiating human neutrophils. Notably, our anti-HER2 ADC shows almost no sign of blood and liver toxicity in healthy mice at 80 mg kg-1. In contrast, at the same dose level, the FDA-approved anti-HER2 ADCs Kadcyla and Enhertu show increased levels of serum alanine aminotransferase and aspartate aminotransferase and morphologic changes in liver tissues. Our EGCit conjugates also exert greater antitumor efficacy in multiple xenograft tumor models compared with Kadcyla and Enhertu. This linker technology could substantially broaden the therapeutic windows of ADCs and other drug delivery agents, providing clinical options with improved efficacy and safety.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Ado-Trastuzumab Emtansine , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Citrulline , Humans , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Mice , Peptide Hydrolases , Therapeutic Index
SELECTION OF CITATIONS
SEARCH DETAIL