Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Inform Med Unlocked ; 38: 101207, 2023.
Article in English | MEDLINE | ID: mdl-36919041

ABSTRACT

Background and aims: Beckman Coulter hematology analysers identify leukocytes by their volume (V), conductivity (C) and scatter (S) of a laser beam at different angles. Each leukocyte sub-population [neutrophils (NE), lymphocytes (LY), monocytes (MO)] is characterized by the mean (MN) and the standard deviation (SD) of 7 measurements called "cellular population data" (@CPD), corresponding to morphological analysis of the leukocytes. As severe forms of infections to SARS-CoV-2 are characterized by a functional activation of mononuclear cells, leading to a cytokine storm, we evaluated whether CPD variations are correlated to the inflammation state, oxygen requirement and lung damage and whether CPD analysis could be useful for a triage of patients with COVID-19 in the Emergency Department (ED) and could help to identify patients with a high risk of worsening. Materials and method: The CPD of 825 consecutive patients with proven COVID-19 presenting to the ED were recorded and compared to classical biochemical parameters, the need for hospitalization in the ward or ICU, the need for oxygen, or lung injury on CT-scan. Results: 40 of the 42 CPD were significantly modified in COVID-19 patients in comparison to 245 controls. @MN-V-MO and @SD-V-MO were highly correlated with C-reactive protein, procalcitonin, ferritin and D-dimers. SD-UMALS-LY > 21.45 and > 23.92 identified, respectively, patients with critical lung injuries (>75%) and requiring tracheal intubation. @SD-V-MO > 25.03 and @SD-V-NE > 19.4 identified patients required immediate ICU admission, whereas a @MN-V-MO < 183 suggested that the patient could be immediately discharged. Using logistic regression, the combination of 8 CPD with platelet and basophil counts and the existence of diabetes or obesity could identify patients requiring ICU after a first stay in conventional wards (area under the curve = 0.843). Conclusion: CPD analysis constitutes an easy and inexpensive tool for triage and prognosis of COVID-19 patients in the ED.

2.
J Clin Med ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202193

ABSTRACT

Symptoms of COVID-19 are similar to the influenza virus, but because treatments and prognoses are different, it is important to accurately and rapidly differentiate these diseases. The aim of this study was to evaluate whether the analysis of complete blood count (CBC), including cellular population (CPD) data of leukocytes and automated flow cytometry analysis, could discriminate these pathologies. In total, 350 patients with COVID-19 and 102 patients with influenza were included between September 2021 and April 2022 in the tertiary hospital of Suresnes (France). Platelets were lower in patients with influenza than in patients with COVID-19, whereas the CD16pos monocyte count and the ratio of the CD16pos monocytes/total monocyte count were higher. Significant differences were observed for 9/56 CPD of COVID-19 and flu patients. A logistic regression model with 17 parameters, including among them 11 CPD, the haemoglobin level, the haematocrit, the red cell distribution width, and B-lymphocyte and CD16pos monocyte levels, discriminates COVID-19 patients from flu patients. The sensitivity and efficiency of the model were 96.2 and 86.6%, respectively, with an area under the curve of 0.862. Classical parameters of CBC are very similar among the three infections, but CPD, CD16pos monocytes, and B-lymphocyte levels can discriminate patients with COVID-19.

3.
Clin Chem Lab Med ; 59(7): 1315-1322, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33606928

ABSTRACT

OBJECTIVES: Severe forms of coronavirus disease 2019 (COVID-19) are characterized by an excessive production of inflammatory cytokines. Activated monocytes secrete high levels of cytokines. Human monocytes are divided into three major populations: conventional (CD14posCD16neg), non-classical (CD14dimCD16pos), and intermediate (CD14posCD16pos) monocytes. The aim of this study was to analyze whether the distribution of conventional (CD16neg) and CD16pos monocytes is different in patients with COVID-19 and whether the variations could be predictive of the outcome of the disease. METHODS: We performed a prospective study on 390 consecutive patients referred to the Emergency Unit, with a proven diagnosis of SARS-CoV 2 infection by RT-PCR. Using the CytoDiff™ reagent, an automated routine leukocyte differential, we quantified CD16neg and CD16pos monocytes. RESULTS: In the entire population, median CD16neg and CD16pos monocyte levels (0.398 and 0.054×109/L, respectively) were in the normal range [(0.3-0.7×109/L) and (0.015-0.065×109/L), respectively], but the 35 patients in the intensive care unit (ICU) had a significantly (p<0.001) lower CD16pos monocyte count (0.018 × 109/L) in comparison to the 70 patients who were discharged (0.064 × 109/L) or were hospitalized in conventional units (0.058 × 109/L). By ROC curve analysis, the ratio [absolute neutrophil count/CD16pos monocyte count] was highly discriminant to identify patients requiring ICU hospitalization: with a cut-off 193.1, the sensitivity and the specificity were 74.3 and 81.8%, respectively (area under the curve=0.817). CONCLUSIONS: Quantification of CD16pos monocytes and the ratio [absolute neutrophil count/CD16pos monocyte count] could constitute a marker of the severity of disease in COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Monocytes/cytology , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers/blood , COVID-19/blood , Female , Humans , Intensive Care Units/statistics & numerical data , Leukocyte Count/statistics & numerical data , Male , Middle Aged , Monocytes/classification , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2 , Young Adult
4.
Int J Lab Hematol ; 43(1): 116-122, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32812365

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is characterized by a high contagiousness requiring isolation measures. At this time, diagnosis is based on the positivity of specific RT-PCR and/or chest computed tomography scan, which are time-consuming and may delay diagnosis. Complete blood count (CBC) can potentially contribute to the diagnosis of COVID-19. We studied whether the analysis of cellular population data (CPD), provided as part of CBC-Diff analysis by the DxH 800 analyzers (Beckman Coulter), can help to identify SARS-CoV-2 infection. METHODS: Cellular population data of the different leukocyte subpopulations were analyzed in 137 controls, 322 patients with proven COVID-19 (COVID+), and 285 patients for whom investigations were negative for SARS-CoV-2 infection (COVID-). When CPD of COVID+ were different from controls and COVID- patients, we used receiver operating characteristic analysis to test the discriminating capacity of the individual parameters. Using a random forest classifier, we developed the algorithm based on the combination of 4 monocyte CPD to discriminate COVID+ from COVID- patients. This algorithm was tested prospectively in a series of 222 patients referred to the emergency unit. RESULTS: Among the 222 patients, 86 were diagnosed as COVID-19 and 60.5% were correctly identified using the discriminating protocol. Among the 136 COVID- patients, 10.3% were misclassified (specificity 89.7%, sensitivity 60.5%). False negatives were observed mainly in patients with a low inflammatory state whereas false positives were mainly seen in patients with sepsis. CONCLUSION: Consideration of CPD could constitute a first step and potentially aid in the early diagnosis of COVID-19.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Early Diagnosis , Leukocyte Count , Pandemics , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Decision Trees , False Negative Reactions , False Positive Reactions , Female , Humans , Leukocytes/classification , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , Supervised Machine Learning , Tomography, X-Ray Computed , Young Adult
5.
Mol Genet Metab ; 130(2): 110-117, 2020 06.
Article in English | MEDLINE | ID: mdl-32273051

ABSTRACT

PURPOSE: We aimed to identify prognostic factors for survival and long-term intellectual and developmental outcome in neonatal patients with early-onset urea cycle disorders (UCD) experiencing hyperammonaemic coma. METHODS: We retrospectively analysed ammonia (NH3) and glutamine levels, electroencephalogram and brain images obtained during neonatal coma of UCD patients born between 1995 and 2011 and managed at a single centre and correlated them to survival and intellectual and developmental outcome. RESULTS: We included 38 neonates suffering from deficiencies of argininosuccinate synthetase (ASSD, N = 12), ornithine transcarbamylase (OTCD, N = 10), carbamoylphosphate synthetase 1 (CPSD, N = 7), argininosuccinate lyase (ASLD, N = 7), N-acetylglutamate synthase (NAGS, N = 1) or arginase (ARGD, N = 1). Symptoms occurred earlier in mitochondrial than in cytosolic UCD. Sixty-eight percent of patients survived, with a mean (standard deviation-SD) follow-up of 10.4 (5.3) years. Mortality was mostly observed in OTCD (N = 7/10) and CPSD (N = 4/7) patients. Plasma NH3 level during the neonatal period, expressed as area under the curve, but not glutamine level was associated with mortality (p = .044 and p = .610). 62.1% of the patients had normal intellectual and developmental outcome. Intellectual and developmental outcome tended to correlate with UCD subtype (p = .052). No difference in plasma NH3 or glutamine level during the neonatal period among developmental outcomes was identified. EEG severity was linked to UCD subtypes (p = .004), ammonia levels (p = .037), duration of coma (p = .043), and mortality during the neonatal period (p = .020). Status epilepticus was recorded in 6 patients, 3 of whom died neonatally, 1 developed a severe intellectual disability while the 2 last patients had a normal development. CONCLUSION: UCD subtypes differed by survival rate, intellectual and developmental outcome and EEG features in the neonatal period. Hyperammonaemia expressed as area under the curve was associated with survival but not with intellectual and developmental outcome whereas glutamine was not associated with one of these outcomes. Prognostic value of video-EEG monitoring and the association between status epilepticus and mortality should be assessed in neonatal hyperammonaemic coma in further studies.


Subject(s)
Argininosuccinate Synthase/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Developmental Disabilities/epidemiology , Infant Mortality/trends , Intellectual Disability/epidemiology , Ornithine Carbamoyltransferase/metabolism , Urea Cycle Disorders, Inborn/mortality , Age of Onset , Ammonia/blood , Developmental Disabilities/enzymology , Developmental Disabilities/pathology , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Intellectual Disability/enzymology , Intellectual Disability/pathology , Male , Retrospective Studies , Urea Cycle Disorders, Inborn/enzymology , Urea Cycle Disorders, Inborn/pathology
8.
Cancer Res ; 78(8): 1914-1922, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29431636

ABSTRACT

Comprehensive genetic analyses have identified germline SDHB and FH gene mutations as predominant causes of metastatic paraganglioma and pheochromocytoma. However, some suspicious cases remain unexplained. In this study, we performed whole-exome sequencing of a paraganglioma exhibiting an SDHx-like molecular profile in the absence of SDHx or FH mutations and identified a germline mutation in the SLC25A11 gene, which encodes the mitochondrial 2-oxoglutarate/malate carrier. Germline SLC25A11 mutations were identified in six other patients, five of whom had metastatic disease. These mutations were associated with loss of heterozygosity, suggesting that SLC25A11 acts as a tumor-suppressor gene. Pseudohypoxic and hypermethylator phenotypes comparable with those described in SDHx- and FH-related tumors were observed both in tumors with mutated SLC25A11 and in Slc25a11Δ/Δ immortalized mouse chromaffin knockout cells generated by CRISPR-Cas9 technology. These data show that SLC25A11 is a novel paraganglioma susceptibility gene for which loss of function correlates with metastatic presentation.Significance: A gene encoding a mitochondrial carrier is implicated in a hereditary cancer predisposition syndrome, expanding the role of mitochondrial dysfunction in paraganglioma. Cancer Res; 78(8); 1914-22. ©2018 AACR.


Subject(s)
Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Genetic Predisposition to Disease , Germ-Line Mutation , Membrane Transport Proteins/genetics , Paraganglioma/secondary , Pheochromocytoma/genetics , Animals , CRISPR-Cas Systems , Cohort Studies , Humans , Loss of Heterozygosity , Mice , Mice, Knockout , Mutation , Neoplasm Metastasis , Paraganglioma/genetics , Phenotype , Pheochromocytoma/secondary
9.
Am J Hum Genet ; 102(2): 266-277, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395073

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.


Subject(s)
Brain/pathology , Endocytosis , Iron/metabolism , Lipoylation , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Receptors, Transferrin/metabolism , Amino Acid Sequence , Calcium-Binding Proteins , Carrier Proteins/genetics , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Mutation/genetics , Receptors, Transferrin/chemistry , Receptors, Transferrin/genetics , Transferrin/metabolism
10.
J Inherit Metab Dis ; 41(4): 623-629, 2018 07.
Article in English | MEDLINE | ID: mdl-28856627

ABSTRACT

Propionic acidemia is the result of a deficiency in propionyl-CoA carboxylase activity. Chronic neurologic and cognitive complications frequently occur, but the psychiatric evolution of the disorder is not well documented. We conducted a pedopsychiatric evaluation of 19 children, adolescents and young adults, aged between 2 and 25 years, using ADI-R, CARS-T, as well as ADOS when autism spectrum disorder was suspected. Previous psychometric examinations were also taken into consideration. Thirteen patients had an IQ < 80. Two patients presented with autism and two additional patients with other autism spectrum disorders. Five patients did not fulfill diagnostic criteria for autism spectrum disorder but showed difficulties indicative of a broader autism phenotype (BAP). Four other patients had severe anxiety manifestations related to their disease. Two patients presented with acute psychotic episodes. The number of decompensations in the first 3 years of life was lower in patients with autism spectrum disorder or related symptoms. These patients were also older when they were assessed (median age of 15 years old versus 11 years old). There was no significant correlation between 3-hydroxypropionate levels during the first 6 years of life and autism spectrum disorder diagnosis. In conclusion, autism spectrum disorder is frequent in patients with propionic acidemia. These patients should undergo in-depth psychiatric evaluation and be screened for autism spectrum disorder. Further studies are needed to understand the underlying mechanisms.


Subject(s)
Autism Spectrum Disorder/diagnosis , Propionic Acidemia/diagnosis , Adolescent , Adult , Autism Spectrum Disorder/genetics , Child , Child, Preschool , Female , Humans , Intellectual Disability/etiology , Lactic Acid/analogs & derivatives , Lactic Acid/metabolism , Male , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/genetics , Young Adult
11.
Orphanet J Rare Dis ; 12(1): 160, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28969699

ABSTRACT

BACKGROUND: Based on the hypothesis of a brain energy deficit, we investigated the safety and efficacy of triheptanoin on paroxysmal episodes in patients with alternating hemiplegia of childhood due to ATP1A3 mutations. METHODS: We conducted a randomized, double-blind, placebo-controlled crossover study of triheptanoin, at a target dose corresponding to 30% of daily calorie intake, in ten patients with alternating hemiplegia of childhood due to ATP1A3 mutations. Each treatment period consisted of a 12-week fixed-dose phase, separated by a 4-week washout period. The primary outcome was the total number of paroxysmal events. Secondary outcomes included the number of paroxysmal motor-epileptic events; a composite score taking into account the number, severity and duration of paroxysmal events; interictal neurological manifestations; the clinical global impression-improvement scale (CGI-I); and safety parameters. The paired non-parametric Wilcoxon test was used to analyze treatment effects. RESULTS: In an intention-to-treat analysis, triheptanoin failed to reduce the total number of paroxysmal events (p = 0.646), including motor-epileptic events (p = 0.585), or the composite score (p = 0.059). CGI-I score did not differ between triheptanoin and placebo periods. Triheptanoin was well tolerated. CONCLUSIONS: Triheptanoin does not prevent paroxysmal events in Alternating hemiplegia of childhood. We show the feasibility of a randomized placebo-controlled trial in this setting. TRIAL REGISTRATION: The study has been registered with clinicaltrials.gov ( NCT002408354 ) the 03/24/2015.


Subject(s)
Hemiplegia/drug therapy , Triglycerides/therapeutic use , Adolescent , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Young Adult
12.
J Inherit Metab Dis ; 40(6): 783-792, 2017 11.
Article in English | MEDLINE | ID: mdl-28905140

ABSTRACT

BACKGROUND: Maple syrup urine disease (MSUD) is a rare disease that requires a protein-restricted diet for successful management. Little is known, however, about the psychosocial outcome of MSUD patients. This study investigates the relationship between metabolic and clinical parameters and psychosocial outcomes in a cohort of patients with neonatal-onset MSUD. METHODS: Data on academic achievement, psychological care, family involvement, and biochemical parameters were collected from the medical records of neonatal MSUD patients treated at Necker Hospital (Paris) between 1964 and 2013. RESULTS: Thirty-five MSUD patients with a mean age of 16.3 (2.1-49.0) years participated. Metabolic decompensations (plasma leucine >380 µmol/L) were more frequent during the first year of life and after 15 years, mainly due to infection and dietary noncompliance, respectively. Leucine levels increased significantly in adulthood: 61.5% of adults were independent and achieved adequate social and professional integration; 56% needed occasional or sustained psychological or psychiatric care (8/19, with externalizing, mood, emotional, and anxiety disorders being the most common). Patients needing psychiatric care were significantly older [mean and standard deviation (SD) 22.6 (7.7) years] than patients needing only psychological follow-up [mean (SD) 14.3 (8.9) years]. Patients with psychological follow-up experienced the highest lifetime number of decompensations; 45% of families had difficulty coping with the chronic disease. Parental involvement was negatively associated with the number of lifetime decompensations. CONCLUSION: Adults had increased levels of plasma leucine, consistent with greater chronic toxicity. Psychological care was associated with age and number of decompensations. In addition, parental involvement appeared to be crucial in the management of MSUD patients.


Subject(s)
Maple Syrup Urine Disease/metabolism , Maple Syrup Urine Disease/psychology , Adolescent , Adult , Child , Child, Preschool , Diet, Protein-Restricted/methods , Female , Follow-Up Studies , Humans , Leucine/blood , Male , Maple Syrup Urine Disease/blood , Middle Aged , Rare Diseases/blood , Rare Diseases/metabolism , Rare Diseases/psychology , Retrospective Studies , Young Adult
13.
Am J Hum Genet ; 101(2): 283-290, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757203

ABSTRACT

Lipoate serves as a cofactor for the glycine cleavage system (GCS) and four 2-oxoacid dehydrogenases functioning in energy metabolism (α-oxoglutarate dehydrogenase [α-KGDHc] and pyruvate dehydrogenase [PDHc]), or amino acid metabolism (branched-chain oxoacid dehydrogenase, 2-oxoadipate dehydrogenase). Mitochondrial lipoate synthesis involves three enzymatic steps catalyzed sequentially by lipoyl(octanoyl) transferase 2 (LIPT2), lipoic acid synthetase (LIAS), and lipoyltransferase 1 (LIPT1). Mutations in LIAS have been associated with nonketotic hyperglycinemia-like early-onset convulsions and encephalopathy combined with a defect in mitochondrial energy metabolism. LIPT1 deficiency spares GCS deficiency and has been associated with a biochemical signature of combined 2-oxoacid dehydrogenase deficiency leading to early death or Leigh-like encephalopathy. We report on the identification of biallelic LIPT2 mutations in three affected individuals from two families with severe neonatal encephalopathy. Brain MRI showed major cortical atrophy with white matter abnormalities and cysts. Plasma glycine was mildly increased. Affected individuals' fibroblasts showed reduced oxygen consumption rates, PDHc, α-KGDHc activities, leucine catabolic flux, and decreased protein lipoylation. A normalization of lipoylation was observed after expression of wild-type LIPT2, arguing for LIPT2 requirement in intramitochondrial lipoate synthesis. Lipoic acid supplementation did not improve clinical condition nor activities of PDHc, α-KGDHc, or leucine metabolism in fibroblasts and was ineffective in yeast deleted for the orthologous LIP2.


Subject(s)
Acyltransferases/genetics , Atrophy/pathology , Brain Diseases/genetics , Brain/pathology , Lipoylation/genetics , Mitochondria/metabolism , Amino Acids/metabolism , Brain/diagnostic imaging , Brain Diseases/pathology , Brain Mapping/methods , Cells, Cultured , Energy Metabolism/genetics , Energy Metabolism/physiology , Glycine/blood , Humans , Infant, Newborn , Magnetic Resonance Imaging , Mitochondria/genetics , Oxygen Consumption/genetics , Protein Binding/genetics , Thioctic Acid/metabolism
14.
Clin Chim Acta ; 470: 70-74, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28457853

ABSTRACT

Congenital disorders of glycosylation (CDGs) are rare inherited disorders affecting glycosylation of proteins and lipids and sharing very heterogeneous multivisceral symptoms. The biochemical screening of these diseases is currently limited to electrophoresis or HPLC separation/quantification of serum transferrin glycoforms and is relatively frequently hampered by genetic polymorphism. Further, it has been shown that transferrin glycosylation can be very poorly affected in confirmed CDGs. We developed a fast and simple two-dimensional (2-DE) Western-blot analysis applied to the simultaneous detection of various serum glycoproteins, i.e. haptoglobin, α1-anti-trypsin, transferrin and α1-acid glycoprotein, and applied it to a large cohort of CDGs and secondary glycosylation disorders. When separated using 2-DE, haptoglobin ß glycoforms showed clear abnormalities in all interpretable CDG type I and CDG type II patterns. Although secondary glycosylation defects such as alcoholism, untreated fructosemia and bacterial neuraminidase remain to be excluded, we showed that 2-DE pattern of haptoglobin ß glycoforms thus constitute a very reliable additional biomarker of all types of CDGs. Coupled with common screening techniques and glycans mass spectrometry, it can orientate and facilitate the way towards CDG molecular diagnostic.


Subject(s)
Congenital Disorders of Glycosylation/metabolism , Electrophoresis, Gel, Two-Dimensional , Haptoglobins/metabolism , Biomarkers/metabolism , Glycosylation , Haptoglobins/isolation & purification , Humans , Transferrin/metabolism
15.
J Inherit Metab Dis ; 40(3): 377-383, 2017 05.
Article in English | MEDLINE | ID: mdl-28324240

ABSTRACT

Maple syrup urine disease (MSUD), an inborn error of amino acids catabolism is characterized by accumulation of branched chain amino acids (BCAAs) leucine, isoleucine, valine and their corresponding alpha-ketoacids. Impact on the cognitive development has been reported historically, with developmental delays of varying degree. Currently, earlier diagnosis and improved management allow a better neurodevelopment, without requirement of special education. However, specific impairments can be observed, and so far, results of detailed neurocognitive assessments are not available. The aim of this study was to analyse neurocognitive profiles of French MSUD patients. This was a multicentre retrospective study on MSUD patients who underwent neurocognitive evaluation at primary school age. Twenty-one patients with classical neonatal onset MSUD were included. The patients' mean age at the time of evaluation was 8.7 years. The mean intellectual quotient (IQ) score was in the normal range (95.1 ± 12.6). In a subset of eight patients, a consistent developmental pattern of higher verbal than performance IQ was observed (mean of the difference 25.7 ± 8.7, p < 0.0001). No correlation could be established between this pattern and long-term metabolic balance (BCAA blood levels), or severity of acute metabolic imbalances, or leucine blood levels at diagnosis and time to toxin removal procedure. These data show that some MSUD patients may exhibit an abnormal neurocognitive profile with higher verbal than performance abilities. This might suggest an executive dysfunction disorder that would need to be further investigated by specialized testing. This pattern is important to detect in MSUD, as appropriate neuropsychological treatment strategies should be proposed.


Subject(s)
Cognition/physiology , Maple Syrup Urine Disease/physiopathology , Amino Acids, Branched-Chain/blood , Child , Early Diagnosis , Female , Humans , Infant , Infant, Newborn , Isoleucine/blood , Leucine/blood , Male , Maple Syrup Urine Disease/blood , Retrospective Studies , Schools , Valine/blood
16.
Orphanet J Rare Dis ; 12(1): 3, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28057010

ABSTRACT

BACKGROUND: Lysinuric protein intolerance (LPI) is a rare metabolic disease resulting from recessive-inherited mutations in the SLC7A7 gene encoding the cationic amino-acids transporter subunit y+LAT1. The disease is characterised by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous ranging from infiltrative lung disease, kidney failure to auto-immune complications. This retrospective study of all cases treated at Necker Hospital (Paris, France) since 1977 describes LPI in both children and adults in order to improve therapeutic management. RESULTS: Sixteen patients diagnosed with LPI (12 males, 4 females, from 9 families) were followed for a mean of 11.4 years (min-max: 0.4-37.0 years). Presenting signs were failure to thrive (n = 9), gastrointestinal disorders (n = 2), cytopenia (n = 6), hyperammonemia (n = 10) with acute encephalopathy (n = 4) or developmental disability (n = 3), and proteinuria (n = 1). During follow-up, 5 patients presented with acute hyperammonemia, and 8 presented with developmental disability. Kidney disease was observed in all patients: tubulopathy (11/11), proteinuria (4/16) and kidney failure (7/16), which was more common in older patients (mean age of onset 17.7 years, standard deviation 5.33 years), with heterogeneous patterns including a lupus nephritis. We noticed a case of myocardial infarction in a 34-year-old adult. Failure to thrive and signs of haemophagocytic-lymphohistiocytosis were almost constant. Recurrent acute pancreatitis occurred in 2 patients. Ten patients developed an early lung disease. Six died at the mean age of 4 years from pulmonary alveolar proteinosis. This pulmonary involvement was significantly associated with death. Age-adjusted plasma lysine concentrations at diagnosis showed a trend toward increased values in patients with a severe disease course and premature death (Wilcoxon p = 0.08; logrank, p = 0.17). Age at diagnosis was a borderline predictor of overall survival (logrank, p = 0.16). CONCLUSIONS: As expected, early pulmonary involvement with alveolar proteinosis is frequent and severe, being associated with an increased risk of death. Kidney disease frequently occurs in older patients. Cardiovascular and pancreatic involvement has expanded the scope of complications. A borderline association between increased levels of plasma lysine and poorer outome is suggested. Greater efforts at prevention are warranted to optimise the long-term management in these patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/pathology , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/metabolism , Child , Child, Preschool , Humans , Infant , Kidney Diseases/blood , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lupus Nephritis/blood , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lysine/blood , Multiple Chronic Conditions , Mutation , Myocardial Infarction/blood , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Pancreatitis/blood , Pancreatitis/metabolism , Pancreatitis/pathology , Pulmonary Alveolar Proteinosis/blood , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Alveolar Proteinosis/pathology , Retrospective Studies , Urea Cycle Disorders, Inborn/blood , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Young Adult
17.
Sci Rep ; 6: 30776, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27488617

ABSTRACT

Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na(+)/H(+) exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).


Subject(s)
Benzo(a)pyrene/toxicity , Carcinogens, Environmental/toxicity , Cellular Reprogramming/drug effects , Liver/cytology , Sodium-Hydrogen Exchanger 1/metabolism , Animals , Cell Line , Cell Survival , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Lactic Acid/metabolism , Liver/drug effects , Liver/metabolism , Rats
18.
JIMD Rep ; 27: 39-45, 2016.
Article in English | MEDLINE | ID: mdl-26409463

ABSTRACT

Classical neonatal-onset glutaric aciduria type 2 (MAD deficiency) is a severe disorder of mitochondrial fatty acid oxidation associated with poor survival. Secondary dysfunction of acyl-CoA dehydrogenases may result from deficiency for riboflavin transporters, leading to severe disorders that, nevertheless, are treatable by riboflavin supplementation. In the last 10 years, we identified nine newborns with biochemical features consistent with MAD deficiency, only four of whom survived past the neonatal period. A likely iatrogenic cause of riboflavin deficiency was found in two premature newborns having parenteral nutrition, one of whom recovered upon multivitamin supplementation, whereas the other died before diagnosis. Four other patients had demonstrated mutations involving ETF or ETF-DH flavoproteins, whereas the remaining three patients presumably had secondary deficiencies of unknown mechanism. Interestingly, six newborns among the seven tested for plasma amino acids had pronounced hyperprolinemia. In one case, because the initial diagnostic workup did not include organic acids and acylcarnitine profiling, clinical presentation and hyperprolinemia suggested the diagnosis. Analysis of our full cohort of >50,000 samples from >30,000 patients suggests that the proline/alanine ratio may be a good marker of MAD deficiency and could contribute to a more effective management of the treatable forms.

19.
J Inherit Metab Dis ; 39(1): 47-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26109258

ABSTRACT

Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 µM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes.


Subject(s)
Bezafibrate/pharmacology , Cardiomyopathies/drug therapy , Fibroblasts/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Myopathies/drug therapy , Mitochondrial Trifunctional Protein, alpha Subunit/deficiency , Mitochondrial Trifunctional Protein, beta Subunit/deficiency , Mitochondrial Trifunctional Protein/deficiency , Nervous System Diseases/drug therapy , Rhabdomyolysis/drug therapy , Cardiomyopathies/genetics , Cell Line , Genotype , Humans , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Myopathies/genetics , Mitochondrial Trifunctional Protein/genetics , Mitochondrial Trifunctional Protein, alpha Subunit/genetics , Mitochondrial Trifunctional Protein, beta Subunit/genetics , Mutation/genetics , Nervous System Diseases/genetics , Rhabdomyolysis/genetics
20.
Orphanet J Rare Dis ; 10: 58, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25958381

ABSTRACT

BACKGROUND: The principal aim of this study was to investigate the long-term outcomes of a large cohort of patients with ornithine transcarbamylase deficiency (OTCD) who were followed up at a single medical center. METHODS: We analyzed clinical, biochemical and genetic parameters of 90 patients (84 families, 48 males and 42 females) with OTCD between 1971 and 2011. RESULTS: Twenty-seven patients (22 boys, 5 girls) had a neonatal presentation; 52 patients had an "intermediate" late-onset form of the disease (21 boys, 31 girls) that was revealed between 1 month and 16 years; and 11 patients (5 boys, 6 girls) presented in adulthood (16 to 55 years). Patients with a neonatal presentation had increased mortality (90% versus 13% in late-onset forms) and peak plasma ammonium (mean value: 960 µmol/L versus 500 µmol/L) and glutamine (mean value: 4110 µmol/L versus 1000 µmol/L) levels at diagnosis. All of the neonatal forms displayed a greater number of acute decompensations (mean value: 6.2/patient versus 2.5 and 1.4 in infants and adults, respectively). In the adult group, some patients even recently died at the time of presentation during their first episode of coma. Molecular analyses identified a deleterious mutation in 59/68 patients investigated. Single base substitutions were detected more frequently than deletions (69% and 12%, respectively), with a recurrent mutation identified in the late-onset groups (pArg40 His; 13% in infants, 57% in adults); inherited mutations represented half of the cases. The neurological score did not differ significantly between the patients who were alive in the neonatal or late-onset groups and did not correlate with the peak ammonia and plasma glutamine concentrations at diagnosis. However, in late-onset forms of the disease, ammonia levels adjusted according to the glutamine/citrulline ratio at diagnosis were borderline predictors of low IQ (p = 0.12 by logistic regression; area under the receiver operating characteristic curve of 76%, p <0.05). CONCLUSIONS: OTCD remains a severe disease, even in adult-onset patients for whom the prevention of metabolic decompensations is crucial. The combination of biochemical markers warrants further investigations to provide additional prognostic information regarding the neurological outcomes of patients with OTCD.


Subject(s)
Ornithine Carbamoyltransferase Deficiency Disease/pathology , Adolescent , Adult , Ammonia/blood , Ammonia/metabolism , Child , Child, Preschool , Citrulline/blood , Citrulline/metabolism , Female , Glutamine/blood , Glutamine/metabolism , Humans , Infant , Male , Ornithine Carbamoyltransferase Deficiency Disease/blood , Ornithine Carbamoyltransferase Deficiency Disease/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...