Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3370, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336810

ABSTRACT

Microfabricated organ-on-a-chips are rapidly becoming the gold standard for the testing of safety and efficacy of therapeutics. A broad range of designs has emerged, but recreating microvascularised tissue models remains difficult in many cases. This is particularly relevant to mimic the systemic delivery of therapeutics, to capture the complex multi-step processes associated with trans-endothelial transport or diffusion, uptake by targeted tissues and associated metabolic response. In this report, we describe the formation of microvascularised cardiac spheroids embedded in microfluidic chips. Different protocols used for embedding spheroids within vascularised multi-compartment microfluidic chips were investigated first to identify the importance of the spheroid processing, and co-culture with pericytes on the integration of the spheroid within the microvascular networks formed. The architecture of the resulting models, the expression of cardiac and endothelial markers and the perfusion of the system was then investigated. This confirmed the excellent stability of the vascular networks formed, as well as the persistent expression of cardiomyocyte markers such as cTNT and the assembly of striated F-actin, myosin and α-actinin cytoskeletal networks typically associated with contractility and beating. The ability to retain beating over prolonged periods of time was quantified, over 25 days, demonstrating not only perfusability but also functional performance of the tissue model. Finally, as a proof-of-concept of therapeutic testing, the toxicity of one therapeutic associated with cardiac disfunction was evaluated, identifying differences between direct in vitro testing on suspended spheroids and vascularised models.


Subject(s)
Cell Culture Techniques , Spheroids, Cellular , Cell Culture Techniques/methods , Microfluidics/methods , Coculture Techniques , Lab-On-A-Chip Devices
2.
Lab Chip ; 24(4): 854-868, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38240720

ABSTRACT

The pancreatic ductal adenocarcinoma (PDAC) stroma and its inherent biophysical barriers to drug delivery are central to therapeutic resistance. This makes PDAC the most prevalent pancreatic cancer with poor prognosis. The chemotherapeutic drug gemcitabine is used against various solid tumours, including pancreatic cancer, but with only a modest effect on patient survival. The growing PDAC tumour mass with high densities of cells and extracellular matrix (ECM) proteins, i.e., collagen, results in high interstitial pressure, leading to vasculature collapse and a dense, hypoxic, mechanically stiff stroma with reduced interstitial flow, critical to drug delivery to cells. Despite this, most drug studies are performed on cellular models that neglect these biophysical barriers to drug delivery. Microfluidic technology offers a promising platform to emulate tumour biophysical characteristics with appropriate flow conditions and transport dynamics. We present a microfluidic PDAC culture model, encompassing the disease's biophysical barriers to therapeutics, to evaluate the use of the angiotensin II receptor blocker losartan, which has been found to have matrix-depleting properties, on improving gemcitabine efficacy. PDAC cells were seeded into our 5-channel microfluidic device for a 21-day culture to mimic the rigid, collagenous PDAC stroma with reduced interstitial flow, which is critical to drug delivery to the cancer cells, and for assessment with gemcitabine and losartan treatment. With losartan, our culture matrix was more porous with less collagen, resulting in increased hydraulic conductivity of the culture interstitial space and improved gemcitabine effect. We demonstrate the importance of modelling tumour biophysical barriers to successfully assess new drugs and delivery methods.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Losartan/therapeutic use , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Collagen/metabolism , Cell Line, Tumor
3.
Cells ; 12(20)2023 10 11.
Article in English | MEDLINE | ID: mdl-37887280

ABSTRACT

Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.


Subject(s)
Mesenchymal Stem Cells , Pericytes , Humans , Endothelial Cells/metabolism , Epithelial Cells , Coculture Techniques
4.
Matrix Biol Plus ; 14: 100109, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35399702

ABSTRACT

Despite improvements in the understanding of disease biology, pancreatic ductal adenocarcinoma (PDAC) remains the most malignant cancer of the pancreas. PDAC constitutes ∼95% of all pancreatic cancers, and it is highly resistant to therapeutics. The increased tissue rigidity, which stems from the rich fibrotic stroma in the tumor microenvironment, is central to disease development, physiology, and resistance to drug perfusion. Pancreatic stellate cells (PSCs) are responsible for overproduction of extracellular matrix in the fibrotic stroma, and this is exacerbated by the overexpression of transforming growth factor-ß (TGF-ß). However, there are few in vitro PDAC models, which include both PSCs and TGF-ß or mimic in vivo-like tumor stiffness. In this study, we present a three-dimensional in vitro PDAC model, which includes PSCs and TGF-ß, and recapitulates PDAC tissue mechanical stiffness. Using oscillatory shear rheology, we show the mechanical stiffness of the model is within range of the PDAC tissue stiffness by day 21 of culture and highlight that the matrix environment is essential to adequately capture PDAC disease. PDAC is a complex, aggressive disease with poor prognosis, and biophysically relevant in vitro PDAC models, which take into account tissue mechanics, will provide improved tumor models for effective therapeutic assessment.

5.
SLAS Discov ; 26(3): 352-363, 2021 03.
Article in English | MEDLINE | ID: mdl-33283596

ABSTRACT

Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) provide an in vitro model of the human myocardium. Complex 3D scaffolded culture methods improve the phenotypical maturity of iPSC-CMs, although typically at the expense of throughput. We have developed a novel, scalable approach that enables the use of iPSC-CM 3D spheroid models in a label-free readout system in a standard 96-well plate-based format. Spheroids were accurately positioned onto recording electrodes using a magnetic gold-iron oxide nanoparticle approach. Remarkably, both contractility (impedance) and extracellular field potentials (EFPs) could be detected from the actively beating spheroids over long durations and after automated dosing with pharmacological agents. The effects on these parameters of factors, such as co-culture (including human primary cardiac fibroblasts), extracellular buffer composition, and electrical pacing, were investigated. Beat amplitudes were increased greater than 15-fold by co-culture with fibroblasts. Optimization of extracellular Ca2+ fluxes and electrical pacing promoted the proper physiological response to positive inotropic agonists of increased beat amplitude (force) rather than the increased beat rate often observed in iPSC-CM studies. Mechanistically divergent repolarizations in different spheroid models were indicated by their responses to BaCl2 compared with E-4031. These studies demonstrate a new method that enables the pharmacological responses of 3D iPSC-CM spheroids to be determined in a label-free, standardized, 96-well plate-based system. This approach could have discovery applications across cardiovascular efficacy and safety, where parameters typically sought as readouts of iPSC-CM maturity or physiological relevance have the potential to improve assay predictivity.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Fibroblasts/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Piperidines/pharmacology , Pyridines/pharmacology , Spheroids, Cellular/drug effects , Barium Compounds/pharmacology , Biological Assay , Calcium/metabolism , Cell Differentiation , Chlorides/pharmacology , Coculture Techniques , Ferric Compounds/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Gold/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Ion Transport , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Biological , Myocardial Contraction/physiology , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism
6.
Theranostics ; 10(24): 10973-10992, 2020.
Article in English | MEDLINE | ID: mdl-33042265

ABSTRACT

Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Drug Delivery Systems/methods , Microbubbles/therapeutic use , Ultrasonic Waves , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Combined Modality Therapy/methods , Female , Humans , Irinotecan , Microfluidic Analytical Techniques , Positron-Emission Tomography , Tissue Distribution/radiation effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
7.
Bioengineering (Basel) ; 7(3)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947816

ABSTRACT

Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.

8.
Drug Discov Today ; 24(5): 1217-1223, 2019 05.
Article in English | MEDLINE | ID: mdl-30880172

ABSTRACT

Organs-on-a-chip (OOAC) are research platforms containing cellular models designed to recapitulate relevant biological cues and, in some cases, enable communication between 'on-chip' connected organs. With enhanced physiological relevance, improvements in predictivity of the efficacy and toxicity of test compounds are anticipated. However, there are challenges to demonstrate the 'gain of confidence' of this technology for patient benefit. Translational challenges, the opportunities and deficiencies of the organ models, their intercommunication and the platform technology are all issues to be resolved. Sensitive, real-time detection technologies and data-rich readouts are needed to understand OOAC biology. Thus, the validation of normal and disease biology on chip, and modelling to translate these data to patients, will help position this technology in mainstream drug discovery.


Subject(s)
Drug Discovery , Lab-On-A-Chip Devices , Tissue Engineering , Animals , Humans , Models, Biological , Translational Research, Biomedical
9.
ChemMedChem ; 13(3): 231-235, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29266803

ABSTRACT

Cyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Further structure-guided optimization delivered a series of selective CDK12 inhibitors, including compound 7 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-isopropyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Profiling of this compound across CDK9, 7, 2, and 1 at high ATP concentration, single-point kinase panel screening against 352 targets at 0.1 µm, and proteomics via kinase affinity matrix technology demonstrated the selectivity. This series of compounds inhibits phosphorylation of Ser2 on the C-terminal repeat domain of RNA polymerase II, consistent with CDK12 inhibition. These selective compounds were also acutely toxic to OV90 as well as THP1 cells.


Subject(s)
Benzimidazoles/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Piperidines/chemical synthesis , Purines/chemistry , Pyridinium Compounds/chemistry , Benzimidazoles/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cell Survival/drug effects , Crystallization , Cyclic N-Oxides , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Design , Humans , Indolizines , Kinetics , Phosphorylation , Piperidines/pharmacology , Protein Binding , Purines/pharmacology , Pyridinium Compounds/pharmacology , RNA Polymerase II/metabolism , Stereoisomerism , Structure-Activity Relationship
10.
ACS Chem Biol ; 11(11): 3007-3023, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27571164

ABSTRACT

While mechanisms of cytotoxicity and cytostaticity have been studied extensively from the biological side, relatively little is currently understood regarding areas of chemical space leading to cytotoxicity and cytostasis in large compound collections. Predicting and rationalizing potential adverse mechanism-of-actions (MoAs) of small molecules is however crucial for screening library design, given the link of even low level cytotoxicity and adverse events observed in man. In this study, we analyzed results from a cell-based cytotoxicity screening cascade, comprising 296 970 nontoxic, 5784 cytotoxic and cytostatic, and 2327 cytostatic-only compounds evaluated on the THP-1 cell-line. We employed an in silico MoA analysis protocol, utilizing 9.5 million active and 602 million inactive bioactivity points to generate target predictions, annotate predicted targets with pathways, and calculate enrichment metrics to highlight targets and pathways. Predictions identify known mechanisms for the top ranking targets and pathways for both phenotypes after review and indicate that while processes involved in cytotoxicity versus cytostaticity seem to overlap, differences between both phenotypes seem to exist to some extent. Cytotoxic predictions highlight many kinases, including the potentially novel cytotoxicity-related target STK32C, while cytostatic predictions outline targets linked with response to DNA damage, metabolism, and cytoskeletal machinery. Fragment analysis was also employed to generate a library of toxicophores to improve general understanding of the chemical features driving toxicity. We highlight substructures with potential kinase-dependent and kinase-independent mechanisms of toxicity. We also trained a cytotoxic classification model on proprietary and public compound readouts, and prospectively validated these on 988 novel compounds comprising difficult and trivial testing instances, to establish the applicability domain of models. The proprietary model performed with precision and recall scores of 77.9% and 83.8%, respectively. The MoA results and top ranking substructures with accompanying MoA predictions are available as a platform to assess screening collections.


Subject(s)
Cell Cycle/drug effects , Cell Survival/drug effects , High-Throughput Screening Assays/methods , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...