Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141904, 2024 May.
Article in English | MEDLINE | ID: mdl-38582174

ABSTRACT

Rice blast, an extremely destructive disease caused by the filamentous fungal pathogen Magnaporthe oryzae, poses a global threat to the production of rice (Oryza sativa L.). The emerging trend of reducing dependence on chemical fungicides for crop protection has increased interest in exploring bioformulated nanomaterials as a sustainable alternative antimicrobial strategy for effectively managing plant diseases. Herein, we used physiomorphological, transcriptomic, and metabolomic methods to investigate the toxicity and molecular action mechanisms of moringa-chitosan nanoparticles (M-CNPs) against M. oryzae. Our results demonstrate that M-CNPs exhibit direct antifungal properties by impeding the growth and conidia formation of M. oryzae in a concentration-dependent manner. Propidium iodide staining indicated concentration-dependent significant apoptosis (91.33%) in the fungus. Ultrastructural observations revealed complete structural damage in fungal cells treated with 200 mg/L M-CNPs, including disruption of the cell wall and destruction of internal organelles. Transcriptomic and metabolomic analyses revealed the intricate mechanism underlying the toxicity of M-CNPs against M. oryzae. The transcriptomics data indicated that exposure to M-CNPs disrupted various processes integral to cell membrane biosynthesis, aflatoxin biosynthesis, transcriptional regulation, and nuclear integrity in M. oryzae., emphasizing the interaction between M-CNPs and fungal cells. Similarly, metabolomic profiling demonstrated that exposure to M-CNPs significantly altered the levels of several key metabolites involved in the integral components of metabolic pathways, microbial metabolism, histidine metabolism, citrate cycle, and lipid and protein metabolism in M. oryzae. Overall, these findings demonstrated the potent antifungal action of M-CNPs, with a remarkable impact at the physiological and molecular level, culminating in substantial apoptotic-like fungal cell death. This research provides a novel perspective on investigating bioformulated nanomaterials as antifungal agents for plant disease control.


Subject(s)
Chitosan , Nanoparticles , Oryza , Plant Diseases , Transcriptome , Chitosan/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Transcriptome/drug effects , Oryza/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Metabolomics , Antifungal Agents/toxicity , Antifungal Agents/pharmacology , Ascomycota/drug effects , Ascomycota/genetics
2.
Physiol Plant ; 176(2): e14314, 2024.
Article in English | MEDLINE | ID: mdl-38654401

ABSTRACT

The ancient bayberry demonstrates superior resistance to both biotic and abiotic stresses compared to cultivated bayberry, yet the underlying mechanisms remain largely unexplored. This study investigates whether long-term bayberry cultivation enhances stress resistance through modulation of tissue-specific microbes and metabolites. Employing microbiome amplicon sequencing alongside untargeted mass spectrometry analysis, we scrutinize the role of endosphere and rhizosphere microbial communities and metabolites in shaping the differential resistance observed between ancient and cultivated bayberry trees. Our findings highlight the presence of core microbiome and metabolites across various bayberry tissues, suggesting that the heightened resistance of ancient bayberry may stem from alterations in rhizosphere and endosphere microbial communities and secondary metabolites. Specifically, enrichment of Bacillus in roots and stems, Pseudomonas in leaves, and Mortierella in rhizosphere soil of ancient bayberry was noted. Furthermore, correlation analysis underscores the significance of enriched microbial species in enhancing ancient bayberry's resistance to stresses, with elevated levels of resistance-associated metabolites such as beta-myrcene, benzothiazole, L-glutamic acid, and gamma-aminobutyric acid identified through GC-MS metabolomics analysis. The beneficial role of these resistance-associated metabolites was further elucidated through assessment of their promotive and allelopathic effects, as well as their phytostatic and antioxidant functions in lettuce plants. Ultimately, our study delves into the intrinsic reasons behind the greater resistance of ancient bayberry to biotic and abiotic stresses by evaluating the impact of long-term planting on the microbial community and metabolites in the bayberry endosphere and rhizosphere, shedding light on the complex dynamics of host-microbial interactions.


Subject(s)
Microbiota , Myrica , Rhizosphere , Stress, Physiological , Myrica/metabolism , Myrica/microbiology , Myrica/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Soil Microbiology
3.
Carbohydr Polym ; 334: 122023, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553222

ABSTRACT

Rice blast disease (RBD) caused by Magnaporthe oryzae, threaten food security by cutting agricultural output. Nano agrochemicals are now perceived as sustainable, cost-effective alternatives to traditional pesticides. This study investigated bioformulation of moringa chitosan nanoparticles (M-CsNPs) and their mechanisms for suppressing RBD while minimizing toxic effects on the microenvironment. M-CsNPs, sized 46 nm with semi-spherical morphology, significantly suppressed pathogen growth, integrity, and colonization at 200 mg L-1in vitro. Greenhouse tests with foliar exposure to the same concentration resulted in a substantial 77.7 % reduction in RBD, enhancing antioxidant enzyme activity and plant health. Furthermore, M-CsNPs improved photosynthesis, gas exchange, and the nutritional profile of diseased rice plants. RNA-seq analysis highlighted upregulated defense-related genes in treated rice plants. Metagenomic study showcased reshaping of the rice microbiome, reducing Magnaporthe abundance by 93.5 %. Both healthy and diseased rice plants showed increased microbial diversity, particularly favoring specific beneficial species Thiobacillus, Nitrospira, Nocardioides, and Sphingomicrobium in the rhizosphere and Azonexus, Agarivorans, and Bradyrhizobium in the phyllosphere. This comprehensive study unravels the diverse mechanisms by which M-CsNPs interact with plants and pathogens, curbing M. oryzae damage, promoting plant growth, and modulating the rice microbiome. It underscores the significant potential for effective plant disease management.


Subject(s)
Chitosan , Microbiota , Oryza , Disease Resistance , Oryza/genetics , Chitosan/pharmacology , Bacteria , Plant Diseases/prevention & control
4.
Plants (Basel) ; 12(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375902

ABSTRACT

Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify endophytic bacteria and evaluate their efficacy for the plant growth promotion and disease suppression of Fusarium seedling blight (FSB) in wheat. The Pseudomonas poae strain CO showed strong antifungal activity in vitro and under greenhouse conditions against F. graminearum strain PH-1. The cell-free supernatants (CFSs) of P. poae strain CO were able to inhibit the mycelium growth, the number of colonies forming, spore germination, germ tube length, and the mycotoxin production of FSB with an inhibition rate of 87.00, 62.25, 51.33, 69.29, and 71.08%, respectively, with the highest concentration of CFSs. The results indicated that P. poae exhibited multifarious antifungal properties, such as the production of hydrolytic enzymes, siderophores, and lipopeptides. In addition, compared to untreated seeds, wheat plants treated with the strain showed significant growth rates, where root and shoot length increased by about 33% and the weight of fresh roots, fresh shoots, dry roots, and dry shoots by 50%. In addition, the strain produced high levels of indole-3-acetic acid, phosphate solubilization, and nitrogen fixation. Finally, the strain demonstrated strong antagonistic properties as well as a variety of plant growth-promoting properties. Thus, this result suggest that this strain could be used as an alternate to synthetic chemicals, which can serve as an effective method of protecting wheat from fungal infection.

5.
Protein Pept Lett ; 28(8): 861-877, 2021.
Article in English | MEDLINE | ID: mdl-33602066

ABSTRACT

Abiotic stresses in plants such as salinity, drought, heavy metal toxicity, heat, and nutrients limitations significantly reduce agricultural production worldwide. The genome editing techniques such as transcriptional activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) have been used for genome manipulations in plants. However, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technique has recently emerged as a promising tool for genome editing in plants to acquire desirable traits. The CRISPR/Cas9 system has a great potential to develop crop varieties with improved tolerance against abiotic stresses. This review is centered on the biology and potential application of the CRISPR/Cas9 system to improve abiotic stress tolerance in plants. Furthermore, this review highlighted the recent advancements of CRISPR/Cas9-mediated genome editing for sustainable agriculture.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Gene Editing , Genome, Plant , Plants/genetics , Stress, Physiological/genetics
6.
Nanomaterials (Basel) ; 10(6)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545239

ABSTRACT

A large number of metallic nanoparticles have been successfully synthesized by using different plant extracts and microbes including bacteria, fungi viruses and microalgae. Some of these metallic nanoparticles showed strong antimicrobial activities against phytopathogens. Here, we summarized these green-synthesized nanoparticles from plants and microbes and their applications in the control of plant pathogens. We also discussed the potential deleterious effects of the metallic nanoparticles on plants and beneficial microbial communities associated with plants. Overall, this review calls for attention regarding the use of green-synthesized metallic nanoparticles in controlling plant diseases and clarification of the risks to plants, plant-associated microbial communities, and environments before using them in agriculture.

7.
Front Microbiol ; 11: 618601, 2020.
Article in English | MEDLINE | ID: mdl-33537018

ABSTRACT

Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus' antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...