Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
3.
Diabet Med ; : e15419, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129150

ABSTRACT

AIM: One third of Australian children diagnosed with type 1 diabetes present with life-threatening diabetic ketoacidosis (DKA) at diagnosis. Screening for early-stage, presymptomatic type 1 diabetes, with ongoing follow-up, can substantially reduce this risk (<5% risk). Several screening models are being trialled internationally, without consensus on the optimal approach. This pilot study aims to assess three models for a routine, population-wide screening programme in Australia. METHODS: An implementation science-guided pilot study to evaluate the feasibility, acceptability and costs of three screening models in children will be conducted between July 2022 and June 2024. These models are as follows: (1) Genetic risk-stratified screening using newborn heel prick dried bloodspots, followed by autoantibody testing from 11 months of age; (2) genetic risk-stratified screening of infant (6-12 months) saliva followed by autoantibody testing from 10 months of age; and (3) autoantibody screening using capillary dried bloodspots collected from children aged 2, 6 or 10 years. Cohorts for each model will be recruited from targeted geographic areas across Australia involving ≥2 states per cohort, with a recruitment target of up to 3000 children per cohort (total up to 9000 children). The primary outcome is screening uptake for each cohort. Secondary outcomes include programme feasibility, costs, parental anxiety, risk perception, satisfaction, well-being and quality of life, and health professional attitudes and satisfaction. CONCLUSIONS: This pilot is the first direct comparison of three screening implementation models for general population screening. Findings will provide evidence to inform a potential national screening programme for Australian children. TRIAL REGISTRATION: ACTRN12622000381785.

4.
Article in English | MEDLINE | ID: mdl-38996042

ABSTRACT

PURPOSE: Autoantibodies to thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) define pre-clinical autoimmune thyroid disease (AITD) which can progress to either clinical hypo- or hyperthyroidism. We determined the age at seroconversion in children genetically at risk for type 1 diabetes. METHODS: TPOAb and TgAb seropositivity were determined in 5066 healthy children with HLA DR3 or DR4 containing haplogenotypes from The Environmental Determinants of Diabetes in the Young (TEDDY) Study. Children seropositive on the cross-sectional initial screen at 8-13 years of age had longitudinally collected samples (from 3.5 months of age) screened retrospectively and prospectively for thyroid autoantibodies to identify the age at seroconversion. First-appearing autoantibody was related to sex, HLA genotype, family history of AITD, and subsequent thyroid dysfunction and disease. RESULTS: The youngest appearance of TPOAb and TgAb was 10 and 15 months of age, respectively. Girls had higher incidence rates of both autoantibodies. Family history of AITD was associated with a higher risk of TPOAb hazard ratio [HR] 1.90, 95% confidence interval [CI] 1.17, 3.08; and TgAb HR 2.55, 95% CI 1.91, 3.41. The risk of progressing to hypo- or hyperthyroidism was not different between TgAb and TPOAb, but children with both autoantibodies appearing at the same visit had a higher risk compared to TPOAb appearing first (HR 6.34, 95% CI 2.72, 14.76). MAIN CONCLUSION: Thyroid autoantibodies may appear during the first years of life, especially in girls, and in children with a family history of AITD. Simultaneous appearance of both autoantibodies increases the risk for hypo- or hyperthyroidism.

5.
Diabetologia ; 67(9): 1731-1759, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38910151

ABSTRACT

Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/diagnosis , Autoantibodies/immunology , Autoantibodies/blood , Consensus , Islets of Langerhans/immunology , Disease Progression , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/immunology
6.
Diabetes Care ; 47(8): 1276-1298, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912694

ABSTRACT

Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programs are being increasingly emphasized. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk for (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in nonspecialized settings. To inform this monitoring, JDRF, in conjunction with international experts and societies, developed consensus guidance. Broad advice from this guidance includes the following: 1) partnerships should be fostered between endocrinologists and primary care providers to care for people who are IAb+; 2) when people who are IAb+ are initially identified, there is a need for confirmation using a second sample; 3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; 4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; 5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and 6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasizes significant unmet needs for further research on early-stage type 1 diabetes to increase the rigor of future recommendations and inform clinical care.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/diagnosis , Humans , Autoantibodies/blood , Autoantibodies/immunology , Consensus , Islets of Langerhans/immunology
7.
Diabetes Care ; 47(8): 1424-1431, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38861550

ABSTRACT

OBJECTIVE: To characterize distinct islet autoantibody profiles preceding stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS: The T1DI (Type 1 Diabetes Intelligence) study combined data from 1,845 genetically susceptible prospectively observed children who were positive for at least one islet autoantibody: insulin autoantibody (IAA), GAD antibody (GADA), or islet antigen 2 antibody (IA-2A). Using a novel similarity algorithm that considers an individual's temporal autoantibody profile, age at autoantibody appearance, and variation in the positivity of autoantibody types, we performed an unsupervised hierarchical clustering analysis. Progression rates to diabetes were analyzed via survival analysis. RESULTS: We identified five main clusters of individuals with distinct autoantibody profiles characterized by seroconversion age and sequence of appearance of the three autoantibodies. The highest 5-year risk from first positive autoantibody to type 1 diabetes (69.9%; 95% CI 60.0-79.2) was observed in children who first developed IAA in early life (median age 1.6 years) followed by GADA (1.9 years) and then IA-2A (2.1 years). Their 10-year risk was 89.9% (95% CI 81.9-95.4). A high 5-year risk was also found in children with persistent IAA and GADA (39.1%) and children with persistent GADA and IA-2A (30.9%). A lower 5-year risk (10.5%) was observed in children with a late appearance of persistent GADA (6.1 years). The lowest 5-year diabetes risk (1.6%) was associated with positivity for a single, often reverting, autoantibody. CONCLUSIONS: The novel clustering algorithm identified children with distinct islet autoantibody profiles and progression rates to diabetes. These results are useful for prediction, selection of individuals for prevention trials, and studies investigating various pathways to type 1 diabetes.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/blood , Autoantibodies/blood , Autoantibodies/immunology , Child , Female , Male , Child, Preschool , Adolescent , Infant , Phenotype , Insulin Antibodies/blood
8.
J Endocr Soc ; 8(7): bvae103, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38867880

ABSTRACT

Context: The 2 peaks of type 1 diabetes incidence occur during early childhood and puberty. Objective: We sought to better understand the relationship between puberty, islet autoimmunity, and type 1 diabetes. Methods: The relationships between puberty, islet autoimmunity, and progression to type 1 diabetes were investigated prospectively in children followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Onset of puberty was determined by subject self-assessment of Tanner stages. Associations between speed of pubertal progression, pubertal growth, weight gain, homeostasis model assessment of insulin resistance (HOMA-IR), islet autoimmunity, and progression to type 1 diabetes were assessed. The influence of individual factors was analyzed using Cox proportional hazard ratios. Results: Out of 5677 children who were still in the study at age 8 years, 95% reported at least 1 Tanner Stage score and were included in the study. Children at puberty (Tanner Stage ≥2) had a lower risk (HR 0.65, 95% CI 0.45-0.93; P = .019) for incident autoimmunity than prepubertal children (Tanner Stage 1). An increase of body mass index Z-score was associated with a higher risk (HR 2.88, 95% CI 1.61-5.15; P < .001) of incident insulin autoantibodies. In children with multiple autoantibodies, neither HOMA-IR nor rate of progression to Tanner Stage 4 were associated with progression to type 1 diabetes. Conclusion: Rapid weight gain during puberty is associated with development of islet autoimmunity. Puberty itself had no significant influence on the appearance of autoantibodies or type 1 diabetes. Further studies are needed to better understand the underlying mechanisms.

9.
Diabet Med ; 41(9): e15394, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38937948

ABSTRACT

AIM: This study aimed to evaluate characteristics of autoimmunity in individuals who have a type 2 diagnosis and are relatives of children with type 1 diabetes. METHODS: Pre-diagnosis samples (median 17 months before onset) from relatives who were later diagnosed with type 2 diabetes were measured for autoantibodies to glutamate decarboxylase 65 (GADA), islet antigen-2 (IA-2A), zinc transporter 8 (ZnT8A) and insulin (IAA) as well as the type 1 diabetes genetic risk score (GRS2). Associations between islet autoantibodies, insulin treatment and GRS2 were analysed using Fisher's exact and t-tests. RESULTS: Among 226 relatives (64% men; mean age at sampling 41 years; mean age 54 years at diagnosis), 32 (14%) were islet autoantibody-positive for at least one autoantibody more than a decade before diagnosis. Approximately half of these (n = 15) were treated with insulin. GADA-positivity was higher in insulin-treated relatives than in non-insulin-treated relatives (12/18 [67%] vs. 6/18 [33%], p < 0.001). IAA-positivity was observed in 13/32 (41%) of relatives with autoantibodies. GRS2 scores were increased in autoantibody-positive relatives (p = 0.032), but there was no clear evidence for a difference according to treatment (p = 0.072). CONCLUSION: This study highlights the importance of measuring islet autoantibodies, including IAA, in relatives of people with type 1 diabetes to avoid misdiagnosis.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Autoantibodies/blood , Male , Female , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/diagnosis , Adult , Middle Aged , Child , Islets of Langerhans/immunology , Glutamate Decarboxylase/immunology , Zinc Transporter 8/immunology , Insulin/immunology , Insulin/therapeutic use , Adolescent , Family , Child, Preschool , Genetic Predisposition to Disease
10.
Diabetologia ; 67(8): 1582-1587, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38819466

ABSTRACT

AIMS/HYPOTHESIS: Delivery by Caesarean section continues to rise globally and has been associated with the risk of developing type 1 diabetes and the rate of progression from pre-symptomatic stage 1 or 2 type 1 diabetes to symptomatic stage 3 disease. The aim of this study was to examine the association between Caesarean delivery and progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. METHODS: Caesarean section was examined in 8135 children from the TEDDY study who had an increased genetic risk for type 1 diabetes and were followed from birth for the development of islet autoantibodies and type 1 diabetes. RESULTS: The likelihood of delivery by Caesarean section was higher in children born to mothers with type 1 diabetes (adjusted OR 4.61, 95% CI 3.60, 5.90, p<0.0001), in non-singleton births (adjusted OR 4.35, 95% CI 3.21, 5.88, p<0.0001), in premature births (adjusted OR 1.91, 95% CI 1.53, 2.39, p<0.0001), in children born in the USA (adjusted OR 2.71, 95% CI 2.43, 3.02, p<0.0001) and in children born to older mothers (age group >28-33 years: adjusted OR 1.19, 95% CI 1.04, 1.35, p=0.01; age group >33 years: adjusted OR 1.80, 95% CI 1.58, 2.06, p<0.0001). Caesarean section was not associated with an increased risk of developing pre-symptomatic early-stage type 1 diabetes (risk by age 10 years 5.7% [95% CI 4.6%, 6.7%] for Caesarean delivery vs 6.6% [95% CI 6.0%, 7.3%] for vaginal delivery, p=0.07). Delivery by Caesarean section was associated with a modestly increased rate of progression to stage 3 type 1 diabetes in children who had developed multiple islet autoantibody-positive pre-symptomatic early-stage type 1 diabetes (adjusted HR 1.36, 95% CI 1.03, 1.79, p=0.02). No interaction was observed between Caesarean section and non-HLA SNPs conferring susceptibility for type 1 diabetes. CONCLUSIONS/INTERPRETATION: Caesarean section increased the rate of progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. DATA AVAILABILITY: Data from the TEDDY study ( https://doi.org/10.58020/y3jk-x087 ) reported here will be made available for request at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository (NIDDK-CR) Resources for Research (R4R) ( https://repository.niddk.nih.gov/ ).


Subject(s)
Cesarean Section , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/genetics , Female , Cesarean Section/adverse effects , Pregnancy , Child , Risk Factors , Male , Child, Preschool , Adult , Autoantibodies/immunology , Infant, Newborn , Disease Progression
11.
Eur J Nutr ; 63(4): 1329-1338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413484

ABSTRACT

PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years. METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country. RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D.  CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.


Subject(s)
Autoantibodies , Autoimmunity , Diabetes Mellitus, Type 1 , Islets of Langerhans , Vitamin B Complex , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/epidemiology , Male , Female , Vitamin B Complex/administration & dosage , Prospective Studies , Child , Child, Preschool , Infant , Islets of Langerhans/immunology , Autoantibodies/blood , Risk Factors , Diet/methods , Diet/statistics & numerical data , Proportional Hazards Models , United States/epidemiology , Finland/epidemiology , Sweden/epidemiology , Germany/epidemiology , Dietary Supplements , Birth Cohort , Disease Progression
12.
Diabetes Care ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252849

ABSTRACT

OBJECTIVE: With high prevalence of obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We studied 2,966 youth with diabetes in the prospective SEARCH for Diabetes in Youth study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting C-peptide ≥250 pmol/L (≥0.75 ng/mL) after >3 years' (median 74 months) diabetes duration. Models included clinical measures at the baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL cholesterol), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). RESULTS: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with C-peptide ≥0.75 ng/mL (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under the receiver operating characteristic curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope 0.995-0.999). Models retained high performance for predicting retained C-peptide in older youth with obesity (AUCROC 0.88-0.96) and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). CONCLUSIONS: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with T2D.

13.
Diabetes Metab Res Rev ; 40(3): e3744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37888801

ABSTRACT

AIMS: Determining diabetes type in children has become increasingly difficult due to an overlap in typical characteristics between type 1 diabetes (T1D) and type 2 diabetes (T2D). The Diabetes Study in Children of Diverse Ethnicity and Race (DISCOVER) programme is a National Institutes of Health (NIH)-supported multicenter, prospective, observational study that enrols children and adolescents with non-secondary diabetes. The primary aim of the study was to develop improved models to differentiate between T1D and T2D in diverse youth. MATERIALS AND METHODS: The proposed models will evaluate the utility of three existing T1D genetic risk scores in combination with data on islet autoantibodies and other parameters typically available at the time of diabetes onset. Low non-fasting serum C-peptide (<0.6 nmol/L) between 3 and 10 years after diabetes diagnosis will be considered a biomarker for T1D as it reflects the loss of insulin secretion ability. Participating centres are enrolling youth (<19 years old) either with established diabetes (duration 3-10 years) for a cross-sectional evaluation or with recent onset diabetes (duration 3 weeks-15 months) for the longitudinal observation with annual visits for 3 years. Cross-sectional data will be used to develop models. Longitudinal data will be used to externally validate the best-fitting model. RESULTS: The results are expected to improve the ability to classify diabetes type in a large and growing subset of children who have an unclear form of diabetes at diagnosis. CONCLUSIONS: Accurate and timely classification of diabetes type will help establish the correct clinical management early in the course of the disease.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Child , Adolescent , Humans , Young Adult , Adult , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 1/complications , Ethnicity , Cross-Sectional Studies , Prospective Studies
14.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993433

ABSTRACT

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Enterovirus Infections , Islets of Langerhans , Humans , Child , Autoantibodies , Transcriptome , Autoimmunity/genetics , Insulin/metabolism , Enterovirus Infections/genetics , Islets of Langerhans/metabolism
15.
medRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808789

ABSTRACT

Objective: With the high prevalence of pediatric obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). Methods: We studied 2,966 youth with diabetes in the prospective SEARCH study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting c-peptide ≥250 pmol/L (≥0.75ng/ml) after >3 years (median 74 months) of diabetes duration. Models included clinical measures at baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL-C), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). Results: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with c-peptide ≥0.75 ng/ml (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under receiver operator curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope=0.995-0.999). Models retained high performance for predicting retained c-peptide in older youth with obesity (AUCROC 0.88-0.96), and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). Conclusion: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with type 2 diabetes.

16.
Diabetes Care ; 46(10): 1839-1847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37579501

ABSTRACT

OBJECTIVE: To study the interaction among HLA genotype, early probiotic exposure, and timing of complementary foods in relation to risk of islet autoimmunity (IA). RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively follows 8,676 children with increased genetic risk of type 1 diabetes. We used a Cox proportional hazards regression model adjusting for potential confounders to study early feeding and the risk of IA in a sample of 7,770 children. RESULTS: Any solid food introduced early (<6 months) was associated with increased risk of IA if the child had the HLA DR3/4 genotype and no probiotic exposure during the 1st year of life. Rice introduced at 4-5.9 months compared with later in the U.S. was associated with an increased risk of IA. CONCLUSIONS: Timing of solid food introduction, including rice, may be associated with IA in children with the HLA DR3/4 genotype not exposed to probiotics. The microbiome composition under these exposure combinations requires further study.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , Infant , Autoantibodies/genetics , Autoimmunity/genetics , Genetic Predisposition to Disease , Genotype , HLA-DR3 Antigen/genetics , Risk Factors
17.
Pediatr Diabetes ; 20232023.
Article in English | MEDLINE | ID: mdl-37614409

ABSTRACT

Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.


Subject(s)
Autoimmunity , Mediation Analysis , Child , Humans , Body Mass Index , Eating , Energy Intake , Autoantibodies
18.
Diabetes Care ; 46(11): 1908-1915, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37607456

ABSTRACT

OBJECTIVE: To investigate gastrointestinal infection episodes (GIEs) in relation to the appearance of islet autoantibodies in The Environmental Determinants of Diabetes in the Young (TEDDY) cohort. RESEARCH DESIGN AND METHODS: GIEs on risk of autoantibodies against either insulin (IAA) or GAD (GADA) as the first-appearing autoantibody were assessed in a 10-year follow-up of 7,867 children. Stool virome was characterized in a nested case-control study. RESULTS: GIE reports (odds ratio [OR] 2.17 [95% CI 1.39-3.39]) as well as Norwalk viruses found in stool (OR 5.69 [1.36-23.7]) at <1 year of age were associated with an increased IAA risk at 2-4 years of age. GIEs reported at age 1 to <2 years correlated with a lower risk of IAA up to 10 years of age (OR 0.48 [0.35-0.68]). GIE reports at any other age were associated with an increase in IAA risk (OR 2.04 for IAA when GIE was observed 12-23 months prior [1.41-2.96]). Impacts on GADA risk were limited to GIEs <6 months prior to autoantibody development in children <4 years of age (OR 2.16 [1.54-3.02]). CONCLUSIONS: Bidirectional associations were observed. GIEs were associated with increased IAA risk when reported before 1 year of age or 12-23 months prior to IAA. Norwalk virus was identified as one possible candidate factor. GIEs reported during the 2nd year of life were associated with a decreased IAA risk.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Child, Preschool , Autoantibodies , Case-Control Studies , Insulin , Insulin Antibodies , Glutamate Decarboxylase
20.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37390828

ABSTRACT

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/diagnosis , Autoimmunity , Autoantibodies , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL