Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Pulm Med ; 24(1): 381, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095819

ABSTRACT

OBJECTIVE: The study aimed to characterize serum immunoglobulin (Ig) concentrations and their relationship with clinical and paraclinical features in patients with COPD group E in the stable stage. Additionally, the study focused on evaluating the relationship between serum Ig levels and the risk of exacerbations over the next 12 months, thereby clarifying the role of serum Ig deficiency in affecting the future risk for these patients. METHODS: A prospective observational study assessed IgG, IgA, IgM, and IgE levels in 67 COPD patients and 30 healthy controls at Military Hospital 103 from October 2017 to August 2020. Primary outcomes included Ig isotype levels in COPD patients, with secondary outcomes exploring differences compared to controls and associations with clinical variables. RESULTS: COPD patients showed significantly lower IgG concentrations and higher IgA levels than controls. IgM and IgE levels did not differ significantly. Subgroup analysis revealed notable decreases in IgG1 and IgG3 concentrations, with 10.4% of patients exhibiting reduced IgG levels and 0.3% diagnosed with common variable immunodeficiency. No significant associations were found between Ig levels and exacerbation risk or clinical variables. CONCLUSIONS: Serum IgG and IgM concentrations were significantly reduced in COPD patients compared to normal individuals, with IgG1 and IgG3 concentrations notably low. Serum IgA levels were significantly higher in COPD patients compared with normal controls. However, no significant association was found between Ig concentrations, particularly serum IgG deficiency and its subclasses, with the frequency and risk of exacerbations during 12 months of longitudinal follow-up. Caution is warranted in the use of immunoglobulin therapy in the treatment of COPD patients. TRIAL REGISTRATION: An independent ethics committee approved the study (Ethics Committee of Military Hospital 103 (No. 57/2014/VMMU-IRB), which was performed in accordance with the Declaration of Helsinki, Guidelines for Good Clinical Practice.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/therapy , Male , Female , Prospective Studies , Aged , Middle Aged , Immunoglobulin G/blood , Case-Control Studies , Immunoglobulin A/blood , Disease Progression , Immunoglobulins/blood , Immunoglobulin M/blood
2.
BMC Pulm Med ; 24(1): 24, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200490

ABSTRACT

BACKGROUND: Despite global efforts to control the COVID-19 pandemic, the emergence of new viral strains continues to pose a significant threat. Accurate patient stratification, optimized resource allocation, and appropriate treatment are crucial in managing COVID-19 cases. To address this, a simple and accurate prognostic tool capable of rapidly identifying individuals at high risk of mortality is urgently needed. Early prognosis facilitates predicting treatment outcomes and enables effective patient management. The aim of this study was to develop an early predictive model for assessing mortality risk in hospitalized COVID-19 patients, utilizing baseline clinical factors. METHODS: We conducted a descriptive cross-sectional study involving a cohort of 375 COVID-19 patients admitted and treated at the COVID-19 Patient Treatment Center in Military Hospital 175 from October 2021 to December 2022. RESULTS: Among the 375 patients, 246 and 129 patients were categorized into the survival and mortality groups, respectively. Our findings revealed six clinical factors that demonstrated independent predictive value for mortality in COVID-19 patients. These factors included age greater than 50 years, presence of multiple underlying diseases, dyspnea, acute confusion, saturation of peripheral oxygen below 94%, and oxygen demand exceeding 5 L per minute. We integrated these factors to develop the Military Hospital 175 scale (MH175), a prognostic scale demonstrating significant discriminatory ability with an area under the curve (AUC) of 0.87. The optimal cutoff value for predicting mortality risk using the MH175 score was determined to be ≥ 3 points, resulting in a sensitivity of 96.1%, specificity of 63.4%, positive predictive value of 58%, and negative predictive value of 96.9%. CONCLUSIONS: The MH175 scale demonstrated a robust predictive capacity for assessing mortality risk in patients with COVID-19. Implementation of the MH175 scale in clinical settings can aid in patient stratification and facilitate the application of appropriate treatment strategies, ultimately reducing the risk of death. Therefore, the utilization of the MH175 scale holds significant potential to improve clinical outcomes in COVID-19 patients. TRIAL REGISTRATION: An independent ethics committee approved the study (Research Ethics Committee of Military Hospital 175 (No. 3598GCN-HDDD; date: October 8, 2021), which was performed in accordance with the Declaration of Helsinki, Guidelines for Good Clinical Practice.


Subject(s)
COVID-19 , Humans , Middle Aged , Cross-Sectional Studies , Pandemics , Patients , Area Under Curve
SELECTION OF CITATIONS
SEARCH DETAIL