Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1288740, 2023.
Article in English | MEDLINE | ID: mdl-38073638

ABSTRACT

Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma's current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field.

2.
EClinicalMedicine ; 50: 101494, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35755600

ABSTRACT

Background: Glycans play essential functional roles in the nervous system and their pathobiological relevance has become increasingly recognized in numerous brain disorders, but not fully explored in traumatic brain injury (TBI). We investigated longitudinal glycome patterns in patients with moderate to severe TBI (Glasgow Coma Scale [GCS] score ≤12) to characterize glyco-biomarker signatures and their relation to clinical features and long-term outcome. Methods: This prospective single-center observational study included 51 adult patients with TBI (GCS ≤12) admitted to the neurosurgical unit of the University Hospital of Pecs, Pecs, Hungary, between June 2018 and April 2019. We used a high-throughput liquid chromatography-tandem mass spectrometry platform to assess serum levels of N-glycans up to 3 days after injury. Outcome was assessed using the Glasgow Outcome Scale-Extended (GOS-E) at 12 months post-injury. Multivariate statistical techniques, including principal component analysis and orthogonal partial least squares discriminant analysis, were used to analyze glycomics data and define highly influential structures driving class distinction. Receiver operating characteristic analyses were used to determine prognostic accuracy. Findings: We identified 94 N-glycans encompassing all typical structural types, including oligomannose, hybrid, and complex-type entities. Levels of high mannose, hybrid and sialylated structures were temporally altered (p<0·05). Four influential glycans were identified. Two brain-specific structures, HexNAc5Hex3DeoxyHex0NeuAc0 and HexNAc5Hex4DeoxyHex0NeuAc1, were substantially increased early after injury in patients with unfavorable outcome (GOS-E≤4) (area under the curve [AUC]=0·75 [95%CI 0·59-0·90] and AUC=0·71 [0·52-0·89], respectively). Serum levels of HexNAc7Hex7DeoxyHex1NeuAc2 and HexNAc8Hex6DeoxyHex0NeuAc0 were persistently increased in patients with favorable outcome, but undetectable in those with unfavorable outcome. Levels of HexNAc5Hex4DeoxyHex0NeuAc1 were acutely elevated in patients with mass lesions and in those requiring decompressive craniectomy. Interpretation: In spite of the exploratory nature of the study and the relatively small number of patients, our results provide to the best of our knowledge initial evidence supporting the utility of glycomics approaches for biomarker discovery and patient phenotyping in TBI. Further larger multicenter studies will be required to validate our findings and to determine their pathobiological value and potential applications in practice. Funding: This work was funded by the Italian Ministry of Health (grant number GR-2013-02354960), and also partially supported by a NIH grant (1R01GM112490-08).

3.
Biomedicines ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35203460

ABSTRACT

Traumatic brain injury (TBI) is a heterogeneous disease in its origin, neuropathology, and prognosis, with no FDA-approved treatments. The pathology of TBI is complicated and not sufficiently understood, which is the reason why more than 30 clinical trials in the past three decades turned out unsuccessful in phase III. The multifaceted pathophysiology of TBI involves a cascade of metabolic and molecular events including inflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction. In this study, an open head TBI mouse model, induced by controlled cortical impact (CCI), was used to investigate the chronic protective effects of mitoquinone (MitoQ) administration 30 days post-injury. Neurological functions were assessed with the Garcia neuroscore, pole climbing, grip strength, and adhesive removal tests, whereas cognitive and behavioral functions were assessed using the object recognition, Morris water maze, and forced swim tests. As for molecular effects, immunofluorescence staining was conducted to investigate microgliosis, astrocytosis, neuronal cell count, and axonal integrity. The results show that MitoQ enhanced neurological and cognitive functions 30 days post-injury. MitoQ also decreased the activation of astrocytes and microglia, which was accompanied by improved axonal integrity and neuronal cell count in the cortex. Therefore, we conclude that MitoQ has neuroprotective effects in a moderate open head CCI mouse model by decreasing oxidative stress, neuroinflammation, and axonal injury.

4.
Exp Neurol ; 351: 113987, 2022 05.
Article in English | MEDLINE | ID: mdl-35065054

ABSTRACT

Traumatic brain injury (TBI) is a major cause of disability and death. Mild TBI (mTBI) constitutes ~75% of all TBI cases. Repeated exposure to mTBI (rmTBI), leads to the exacerbation of the symptoms compared to single mTBI. To date, there is no FDA-approved drug for TBI or rmTBI. This research aims to investigate possible rmTBI neurotherapy by targeting TBI pathology-related mechanisms. Oxidative stress is partly responsible for TBI/rmTBI neuropathologic outcomes. Thus, targeting oxidative stress may ameliorate TBI/rmTBI consequences. In this study, we hypothesized that mitoquinone (MitoQ), a mitochondria-targeted antioxidant, would ameliorate TBI/rmTBI associated pathologic features by mitigating rmTBI-induced oxidative stress. To model rmTBI, C57BL/6 mice were subjected to three concussive head injuries. MitoQ (5 mg/kg) was administered intraperitoneally to rmTBI+MitoQ mice twice per week over one month. Behavioral and cognitive outcomes were assessed, 30 days following the first head injury, using a battery of behavioral tests. Immunofluorescence was used to assess neuroinflammation and neuronal integrity. Also, qRT-PCR was used to evaluate the expression levels of antioxidant enzymes. Our findings indicated that MitoQ alleviated fine motor function and learning impairments caused by rmTBI. Mechanistically, MitoQ reduced astrocytosis, microgliosis, dendritic and axonal shearing, and increased the expression of antioxidant enzymes. MitoQ administration following rmTBI may represent an efficient approach to ameliorate rmTBI neurological and cellular outcomes with no observable side effects.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain Concussion/complications , Brain Concussion/drug therapy , Brain Concussion/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Dietary Supplements , Disease Models, Animal , Mice , Mice, Inbred C57BL , Organophosphorus Compounds , Oxidative Stress , Ubiquinone/analogs & derivatives
5.
Curr Neuropharmacol ; 20(11): 2050-2065, 2022.
Article in English | MEDLINE | ID: mdl-34856905

ABSTRACT

Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Central Nervous System Diseases , Humans , Microglia/metabolism , Neurons/metabolism , Brain Injuries, Traumatic/metabolism , Brain/pathology , Brain Injuries/metabolism , Central Nervous System Diseases/metabolism
6.
Neuroscientist ; 28(6): 552-571, 2022 12.
Article in English | MEDLINE | ID: mdl-33393420

ABSTRACT

SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus' surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain's circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.


Subject(s)
COVID-19 , Stroke , Child , Humans , Aged , COVID-19/complications , SARS-CoV-2 , Pandemics , Blood-Brain Barrier
7.
Neural Regen Res ; 17(6): 1228-1239, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34782556

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, it became evident that the SARS-CoV-2 virus infects multiple organs including the brain. Several clinical studies revealed that patients with COVID-19 infection experience an array of neurological signs ranging in severity from headaches to life-threatening strokes. Although the exact mechanism by which the SARS-CoV-2 virus directly impacts the brain is not fully understood, several theories have been suggested including direct and indirect pathways induced by the virus. One possible theory is the invasion of SARS-CoV-2 to the brain occurs either through the bloodstream or via the nerve endings which is considered to be the direct route. Such findings are based on studies reporting the presence of viral material in the cerebrospinal fluid and brain cells. Nevertheless, the indirect mechanisms, including blood-clotting abnormalities and prolonged activation of the immune system, can result in further tissue and organ damages seen during the course of the disease. This overview attempts to give a thorough insight into SARS-CoV-2 coronavirus neurological infection and highlights the possible mechanisms leading to the neurological manifestations observed in infected patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...