Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Data Brief ; 34: 106577, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33376760

ABSTRACT

The common cutworm (CCW, Spodopteraab litura Fabricius) is one of the pests that most severely infect soybean (Glycine max L. Merr.). In a previous report, quantitative trait loci (QTL) analysis of CCW resistance using a recombinant inbred line derived from a cross between a susceptible cultivar 'Fukuyutaka' and a resistant cultivar 'Himeshirazu', identified two antixenosis resistance QTLs, CCW-1 and CCW-2. To reveal sequence variation between the aforementioned two cultivars, whole genome resequencing was performed using Illumina HiSeq2000 (75,632,747 and 91,540,849 reads). The generated datasets can be used for fine mapping and gene isolation of CCW-1 and CCW-2 as well as for revealing more detailed genetic differences between 'Fukuyutaka' and 'Himeshirazu' .

2.
Breed Sci ; 70(4): 487-493, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968352

ABSTRACT

Cooked bean hardness is an important trait for the processing of soybean products such as nimame, natto, miso, and soy sauce. Previously, we showed that cooked bean hardness is primarily affected by the pectin methylesterase gene Glyma03g03360, and that calcium content has a secondary effect on this trait. To establish a simple and timely method for the evaluation of cooked bean hardness, primers of amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) were designed to detect a single-nucleotide polymorphism of Glyma03g03360 and subsequently used to evaluate three soybean progeny lines. The determined genotypes were compared to those identified using the cleaved amplified polymorphic sequence (CAPS) method. Seven out of 284 lines presented different genotypes, which were determined using the two methods: A genotypes were incorrectly assigned as heterozygous by CAPS, suggesting that ARMS-PCR is more reliable. Glyma03g03360 genotypes could be used to evaluate cooked bean hardness, except for intermediate values. Cooked bean hardness within the same genotype groups was significantly correlated with calcium contents. These findings indicate that ARMS-PCR is useful for a marker-assisted selection of soybean with soft-cooked beans and that calcium content may be used for additional selection.

3.
DNA Res ; 26(3): 243-260, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31231761

ABSTRACT

Whole-genome re-sequencing is a powerful approach to detect gene variants, but it is expensive to analyse only the target genes. To circumvent this problem, we attempted to detect novel variants of flowering time-related genes and their homologues in soybean mini-core collection by target re-sequencing using AmpliSeq technology. The average depth of 382 amplicons targeting 29 genes was 1,237 with 99.85% of the sequence data mapped to the reference genome. Totally, 461 variants were detected, of which 150 sites were novel and not registered in dbSNP. Known and novel variants were detected in the classical maturity loci-E1, E2, E3, and E4. Additionally, large indel alleles, E1-nl and E3-tr, were successfully identified. Novel loss-of-function and missense variants were found in FT2a, MADS-box, WDR61, phytochromes, and two-component response regulators. The multiple regression analysis showed that four genes-E2, E3, Dt1, and two-component response regulator-can explain 51.1-52.3% of the variation in flowering time of the mini-core collection. Among them, the two-component response regulator with a premature stop codon is a novel gene that has not been reported as a soybean flowering time-related gene. These data suggest that the AmpliSeq technology is a powerful tool to identify novel alleles.


Subject(s)
Flowers/genetics , Genes, Plant , Glycine max/genetics , Polymorphism, Single Nucleotide , Time , Genetic Association Studies , Sequence Analysis, DNA
4.
DNA Res ; 25(2): 123-136, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29186379

ABSTRACT

Using progeny of a cross between Japanese soybean Enrei and Chinese soybean Peking, we developed a high-density linkage map and chromosomal segment substitution lines (CSSLs). The map consists of 2,177 markers with polymorphism information for 32 accessions and provides a detailed genetic framework for these markers. The marker order on the linkage map revealed close agreement with that on the chromosome-scale assembly, Wm82.a2.v1. The differences, especially on Chr. 5 and Chr. 11, in the present map provides information to identify regions in the genome assembly where additional information is required to resolve marker order and assign remaining scaffolds. To cover the entire soybean genome, we used 999 BC3F2 backcross plants and selected 103 CSSLs carrying chromosomal segments from Peking in the genetic background of Enrei. Using these low-genetic-complexity resources, we dissected variation in traits related to flowering, maturity and yield into approximately 50 reproducible quantitative trait loci (QTLs) and evaluated QTLs with small genetic effects as single genetic factors in a uniform genetic background. CSSLs developed in this study may be good starting material for removing the unfavourable characteristics of Peking during pre-breeding and for isolation of genes conferring disease and stress resistance that have not yet been characterized.


Subject(s)
Chromosome Mapping , Genome, Plant , Glycine max/genetics , Polymorphism, Genetic , Quantitative Trait Loci , Genomics , Sequence Analysis, DNA
5.
Plant Mol Biol ; 93(4-5): 479-496, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012053

ABSTRACT

Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.


Subject(s)
Abscisic Acid/pharmacology , Adaptation, Physiological/genetics , Floods , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/drug effects , Glycine max/genetics , Amino Acid Sequence , Cytochrome P-450 Enzyme System/classification , Cytochrome P-450 Enzyme System/genetics , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Glycine max/growth & development , Time Factors
6.
Nutrients ; 8(8)2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27529274

ABSTRACT

Soybean is recognized as a beneficial food with various functional components, such as ß-conglycinin, which improves lipid metabolism. We evaluated the effects of the ß-conglycinin-rich soybean Nanahomare on triglyceride (TG) levels. In this randomized, double-blind, placebo-controlled study, we divided 134 adult subjects into test and placebo groups that consumed processed food containing enriched-ß-conglycinin soybean or low-ß-conglycinin soybean. Hematological tests and body composition measurements were performed at weeks 0 (baseline), 4, 8, and 12 of the study period. TG levels significantly decreased in the test group compared with the placebo group at weeks 4 (change from baseline to week 4, placebo: 0.27 ± 44.13 mg/dL, test: -20.31 ± 43.74 mg/dL, p = 0.035) and 12 (change from baseline to week 12, placebo: -0.14 ± 65.83 mg/dL, test: -21.30 ± 46.21 mg/dL, p = 0.041). In addition, among subjects whose baseline TG levels were ≥100 mg/dL, the levels significantly improved in the test group at weeks 4 (p = 0.010) and 12 (p = 0.030), whereas the levels were not different between the test and placebo groups among those whose baseline levels were <100 mg/dL. These results suggest that the ingestion of enriched-ß-conglycinin soybean improves serum TG levels.


Subject(s)
Antigens, Plant/pharmacology , Eating/physiology , Food, Fortified , Globulins/pharmacology , Glycine max/chemistry , Seed Storage Proteins/pharmacology , Soybean Proteins/pharmacology , Triglycerides/blood , Adult , Aged , Body Composition/drug effects , Double-Blind Method , Female , Humans , Male , Middle Aged , Time Factors
7.
J Proteome Res ; 15(6): 2008-25, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27132649

ABSTRACT

Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.


Subject(s)
Abscisic Acid/pharmacology , Adaptation, Physiological/drug effects , Floods , Glycine max/chemistry , Proteomics/methods , Stress, Physiological , Gene Expression Regulation, Plant , Mutation , Plant Proteins/analysis , Plant Roots , Protein Biosynthesis , Glycine max/physiology
8.
J Agric Food Chem ; 63(40): 8870-8, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26332752

ABSTRACT

Hardness of cooked soybeans [Glycine max (L). Merr.] is an important attribute in food processing. We found one candidate gene, Glyma03g03360, to be associated with the hardness of cotyledons of cooked soybeans, based on a quantitative trait locus and fine-scale mapping analyses using a recombinant inbred line population developed from a cross between two Japanese cultivars, "Natto-shoryu" and "Hyoukei-kuro 3". Analysis of the DNA sequence of Glyma03g03360, a pectin methylesterase gene homologue, revealed three patterns of mutations, two of which result in truncated proteins and one of which results in an amino acid substitution. The truncated proteins are presumed to lack the enzymatic activity of Glyma03g03360. We classified 24 cultivars into four groups based on the sequence of Glyma03g03360. The texture analysis using the 22 cultivars grown in different locations indicated that protein truncation of Glyma03g03360 resulted in softer cotyledons of cooked soybeans, which was further confirmed by texture analysis performed using F2 populations of a cross between "Enrei" and "LD00-3309", and between "Satonohohoemi" and "Sakukei 98". A positive correlation between hardness and calcium content implies the possible effect of calcium binding to pectins on the hardness of cooked soybean cotyledons.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Glycine max/enzymology , Plant Proteins/genetics , Seeds/chemistry , Carboxylic Ester Hydrolases/metabolism , Cooking , Hardness , Mutation , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Glycine max/chemistry , Glycine max/genetics
9.
Breed Sci ; 65(5): 372-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26719739

ABSTRACT

Radiocesium is an extremely harmful radionuclide because of its long half-life; it is important to reduce its transfer from contaminated soil into crops. Here we surveyed genetic variation for seed cesium (Cs) concentration in soybean mini-core collections representing large genetic diversity. The collections grown over 3 years in rotational paddy fields exhibited varying seed Cs concentrations with significant year-to-year correlations, although the phenotypic stability of Cs concentration was lower than that of the congeners potassium (K) and rubidium (Rb). Although Cs is supposedly accumulated in plants via the K transport system, there was no apparent relationship between Cs and K concentrations, whereas a clear positive correlation was observed between Cs and Rb concentrations. Cs and K concentrations in seed showed slightly positive and negative correlations, respectively, with days to flowering. We selected several high or low Cs accumulator candidates on the basis of the 3 years of seed concentration data. These two groups showed significantly different seed Cs concentrations in another field. The differences could not be explained by flowering time alone. These results suggest that genetic variation for seed Cs concentration is present in soybean germplasm and would be useful for breeding low Cs-accumulating varieties.

10.
Proc Natl Acad Sci U S A ; 111(50): 17797-802, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25468966

ABSTRACT

Pod dehiscence (shattering) is essential for the propagation of wild plant species bearing seeds in pods but is a major cause of yield loss in legume and crucifer crops. Although natural genetic variation in pod dehiscence has been, and will be, useful for plant breeding, little is known about the molecular genetic basis of shattering resistance in crops. Therefore, we performed map-based cloning to unveil a major quantitative trait locus (QTL) controlling pod dehiscence in soybean. Fine mapping and complementation testing revealed that the QTL encodes a dirigent-like protein, designated as Pdh1. The gene for the shattering-resistant genotype, pdh1, was defective, having a premature stop codon. The functional gene, Pdh1, was highly expressed in the lignin-rich inner sclerenchyma of pod walls, especially at the stage of initiation in lignin deposition. Comparisons of near-isogenic lines indicated that Pdh1 promotes pod dehiscence by increasing the torsion of dried pod walls, which serves as a driving force for pod dehiscence under low humidity. A survey of soybean germplasm revealed that pdh1 was frequently detected in landraces from semiarid regions and has been extensively used for breeding in North America, the world's leading soybean producer. These findings point to a new mechanism for pod dehiscence involving the dirigent protein family and suggest that pdh1 has played a crucial role in the global expansion of soybean cultivation. Furthermore, the orthologs of pdh1, or genes with the same role, will possibly be useful for crop improvement.


Subject(s)
Breeding/methods , Fruit/physiology , Genes, Plant/genetics , Glycine max/genetics , Seed Dispersal/genetics , Base Sequence , Cloning, Molecular , Computational Biology , Fruit/genetics , In Situ Hybridization , Molecular Sequence Data , Mutation/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
11.
Breed Sci ; 64(4): 331-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25914587

ABSTRACT

Green stem disorder (GSD) is one of the most serious syndromes affecting soybean (Glycine max) cultivation in Japan. In GSD, stems remain green even when pods mature. When soybean plants develop GSD, seed surfaces are soiled by tissue fluid and seed quality is deteriorated during machine harvesting. We performed quantitative trait locus (QTL) analyses for GSD insensitivity using recombinant inbred lines (RILs; n = 154) derived from a cross between an insensitive line ('Touhoku 129') and a sensitive leading cultivar ('Tachinagaha') during a 6-year evaluation. Three effective QTLs were detected. The influences of these QTLs were in the following order: qGSD1 (LG_H) > qGSD2 (LG_F) > qGSD3 (LG_L). At these three QTLs, 'Touhoku 129' genotypes exhibited more GSD insensitivity than 'Tachinagaha' genotypes. The lower incidence of GSD for 'Touhoku129' was attributable primarily to these three QTLs because RILs harboring a 'Touhoku 129' genotype at the three QTLs exhibited a GSD incidence similar to that of 'Touhoku 129.' Although a limitation of this study is that only one mapping population was evaluated, this QTL information and the flanking markers of these QTLs would be effective tools for resolving GSD in soybean breeding programs.

12.
Breed Sci ; 64(4): 362-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25914591

ABSTRACT

Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, 'Natto-shoryu' and 'Hyoukei-kuro 3', which differ largely in boiled seed hardness, which in 'Natto-shoryu' is about twice that of 'Hyoukei-kuro 3'. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the 'Hyoukei-kuro 3' alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding.

13.
Breed Sci ; 61(5): 511-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23136490

ABSTRACT

Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps ("resistance to Phytophthora sojae") genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars.

14.
Breed Sci ; 61(5): 554-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23136494

ABSTRACT

While the cultivated soybean, Glycine max (L.) Merr., is more recalcitrant to pod dehiscence (shattering-resistant) than wild soybean, Glycine soja Sieb. & Zucc., there is also significant genetic variation in shattering resistance among cultivated soybean cultivars. To reveal the genetic basis and develop DNA markers for pod dehiscence, several research groups have conducted quantitative trait locus (QTL) analysis using segregated populations derived from crosses between G. max accessions or between a G. max and G. soja accession. In the populations of G. max, a major QTL was repeatedly identified near SSR marker Sat_366 on linkage group J (chromosome 16). Minor QTLs were also detected in several studies, although less commonality was found for the magnitudes of effect and location. In G. max × G. soja populations, only QTLs with a relatively small effect were detected. The major QTL found in G. max was further fine-mapped, leading to the development of specific markers for the shattering resistance allele at this locus. The markers were used in a breeding program, resulting in the production of near-isogenic lines with shattering resistance and genetic backgrounds of Japanese elite cultivars. The markers and lines developed will hopefully contribute to the rapid production of a variety of shattering-resistant soybean cultivars.

15.
Breed Sci ; 61(5): 653-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23136505

ABSTRACT

'Enrei' is the second leading variety of soybean (Glycine max (L.) Merr.) in Japan. Its cultivation area is mainly restricted to the Hokuriku region. In order to expand the adaptability of 'Enrei', we developed two near-isogenic lines (NILs) of 'Enrei' for the dominant alleles controlling late flowering at the maturity loci, E2 and E3, by backcrossing with marker-assisted selection. The resultant NILs and the original variety were evaluated for flowering, maturity, seed productivity and other agronomic traits in five different locations. Expectedly, NILs with E2 or E3 alleles flowered later than the original variety in most locations. These NILs produced comparatively larger plants in all locations. Seed yields were improved by E2 and E3 in the southern location or in late-sowing conditions, whereas the NIL for E2 exhibited almost the same or lower productivity in the northern locations due to higher degrees of lodging. Seed quality-related traits, such as 100-seed weight and protein content, were not significantly different between the original variety and its NILs. These results suggest that the modification of genotypes at maturity loci provides new varieties that are adaptive to environments of different latitudes while retaining almost the same seed quality as that of the original.

16.
Amino Acids ; 43(6): 2393-416, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22588482

ABSTRACT

A comparative proteomic study was performed to unravel the protein networks involved in cadmium stress response in soybean. Ten-day-old seedlings of contrasting cadmium accumulating soybean cultivars-Harosoy (high cadmium accumulator), Fukuyutaka (low cadmium accumulator), and their recombinant inbred line CDH-80 (high cadmium accumulator) were exposed to 100 µM CdCl(2) treatment for 3 days. Root growth was found to be affected under cadmium stress in all. Varietal differences at root protein level were evaluated. NADP-dependent alkenal double bond reductase P1 was found to be more abundant in low cadmium accumulating Fukuyutaka. Leaf proteome analysis revealed that differentially expressed proteins were primarily involved in metabolism and energy production. The results indicate that both high and low cadmium accumulating cultivars and CDH-80 share some common defense strategies to cope with the cadmium stress. High abundance of enzymes involved in glycolysis and TCA cycle might help cadmium challenged cells to produce more energy necessary to meet the high energy demand. Moreover, enhanced expressions of photosynthesis related proteins indicate quick utilization of photoassimilates in energy generation. Increased abundance of glutamine synthetase in all might be involved in phytochelatin mediated detoxification of cadmium ions. In addition, increased abundance of antioxidant enzymes, namely superoxide dismutase, ascorbate peroxidase, catalase, ensures cellular protection from reactive oxygen species mediated damages under cadmium stress. Enhanced expression of molecular chaperones in high cadmium accumulating cultivar might be another additional defense mechanism for refolding of misfolded proteins and to stabilize protein structure and function, thus maintain cellular homeostasis.


Subject(s)
Cadmium/pharmacology , Glycine max/drug effects , Oxidative Stress/drug effects , Plant Proteins/analysis , Plant Roots/drug effects , Cadmium/chemistry , Plant Proteins/biosynthesis , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Proteome , Glycine max/chemistry , Glycine max/growth & development
17.
J Hered ; 103(2): 278-86, 2012.
Article in English | MEDLINE | ID: mdl-22268161

ABSTRACT

Cadmium (Cd) is a pollutant metal present in soils and toxic to biologic organisms. Previous studies using recombinant inbred lines derived from a cross between soybean (Glycine max [L.] Merr.) cultivars Harosoy and Fukuyutaka revealed a major quantitative trait loci for seed Cd concentration (cd1) in chromosome 9. The genome sequence of Williams 82 suggested that a P(1B)-ATPase gene involved in the transport of metals was located in the vicinity of cd1. cDNA sequencing suggested existence of two types of transcripts: one (GmHMA1a) consisting of 9 exons and 8 introns and the other (GmHMA1b) consisting of 8 exons and 7 introns. The putative polypeptide, GmHMA1a, consisted of 885 amino acids, whereas premature termination of translation of GmHMA1b generated a putative polypeptide with 559 amino acids. GmHMA1a had a 49.8% similarity with AtHMA3, a P(1B)-ATPase of Arabidopsis. GmHMA1a of Fukuyutaka differed from that of Harosoy by a single-base substitution that led to an amino acid substitution from E to G at amino acid position 608. A derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to detect the base substitution, and this dCAPS marker was successfully associated with seed Cd concentration. Transgenic experiments may be necessary to verify that GmHMA1 actually corresponds to cd1.


Subject(s)
Adenosine Triphosphatases/genetics , Cadmium/analysis , Genetic Markers/genetics , Glycine max/genetics , Quantitative Trait Loci/genetics , Seeds/chemistry , Amino Acid Sequence , Amino Acid Substitution/genetics , Base Sequence , Canada , Chromosome Mapping , Computational Biology , DNA Primers/genetics , DNA, Complementary/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology , Glycine max/enzymology
18.
Plant Mol Biol ; 78(3): 301-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22193750

ABSTRACT

ß-conglycinin, a major seed protein in soybean, is composed of α, α', and ß subunits sharing a high homology among them. Despite its many health benefits, ß-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α', and ß subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, 'QT2', lacks all of the ß-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of ß-conglycinin). This gene was characterized using a soybean cultivar 'Fukuyutaka', 'QY7-25', (its near-isogenic line carrying the Scg-1 gene), and the F2 population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a ß-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that ß-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.


Subject(s)
Antigens, Plant/genetics , Antigens, Plant/metabolism , Genes, Plant , Globulins/genetics , Globulins/metabolism , Glycine max/genetics , Glycine max/metabolism , Inverted Repeat Sequences , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Soybean Proteins/genetics , Soybean Proteins/metabolism , Antigens, Plant/chemistry , Base Sequence , Chromosome Mapping , DNA, Plant/genetics , Gene Duplication , Genetic Variation , Genomic Library , Globulins/chemistry , Molecular Sequence Data , Protein Subunits , RNA, Plant/genetics , RNA, Small Interfering/genetics , Seed Storage Proteins/chemistry , Soybean Proteins/chemistry
19.
Biosci Biotechnol Biochem ; 75(6): 1174-6, 2011.
Article in English | MEDLINE | ID: mdl-21670517

ABSTRACT

Oxygenation of lipids during the processing soybeans affects the flavor properties of soy products. We prepared tofu under anaerobic conditions and then evaluated its sensory properties and the compositions of volatiles and oxidized lipids. Anaerobic processing resulted in tofu with less intense richness (kokumi) concomitant with reductions in the amounts of oxidized lipids and volatile compounds.


Subject(s)
Food Handling/methods , Food Industry/methods , Glycine max/metabolism , Seeds/metabolism , Soy Foods/analysis , Anaerobiosis , Humans , Seeds/chemistry , Soybean Proteins/analysis , Glycine max/chemistry , Volatile Organic Compounds/analysis
20.
J Plant Res ; 124(1): 173-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20428921

ABSTRACT

Chilling tolerance is an important trait of soybeans [Glycine max (L.) Merr.] produced in cool climates. We previously isolated a soybean flavonoid 3' hydroxylase (F3'H) gene corresponding to the T locus, which controls pubescence and seed coat color. A genetic link between the T gene and chilling tolerance has been reported, although the exact underlying mechanisms remain unclear. Using the soybean near-isogenic lines (NILs) To7B (TT) and To7G (tt), we examined the relationship between chilling injury, antioxidant activity and flavonoid profiles associated with chilling treatment (15°C). Chilling injury was more severe in the second trifoliate leaves of To7G than in those of To7B. Hydrogen peroxide accumulation and lipid peroxidation were enhanced by chilling in To7G. Chilling-induced enhancement of antioxidant activity was more prominent in To7B than in To7G. High performance liquid chromatography analysis indicated that the contents of quercetin glycosides and isorhamnetin glycosides (3',4'-dihydroxylated flavonol derivatives) increase in the second trifoliate leaves of To7B after chilling treatment, whereas the same treatment increased kaempferol glycoside (4'-monohydroxylated flavonol derivatives) content in the corresponding leaves of To7G. Histochemical staining also demonstrated chilling-induced flavonoid accumulation. Microarray analysis and real-time reverse transcription-PCR demonstrated that the transcript levels of soybean F3'H are upregulated by chilling. The differences in chilling injury, antioxidant activity and flavonoid species between the two NILs support the notion that soybean F3'H affects chilling tolerance by increasing antioxidant activity via production of 3',4'-dihydroxylated flavonol derivatives.


Subject(s)
Adaptation, Physiological/genetics , Antioxidants/metabolism , Cold Temperature , Flavonoids/metabolism , Genes, Plant/genetics , Glycine max/genetics , Pigmentation/genetics , Chromatography, High Pressure Liquid , Flavonoids/biosynthesis , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Oxidative Stress/genetics , Plant Extracts/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Glycine max/cytology , Glycine max/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...