Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 4(6): 1454-1466, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38767452

ABSTRACT

Acute GVHD (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (alloHCT) associated with gut microbiota disruptions. However, whether therapeutic microbiota modulation prevents aGVHD is unknown. We conducted a randomized, placebo-controlled trial of third-party fecal microbiota transplantation (FMT) administered at the peak of microbiota injury in 100 patients with acute myeloid leukemia receiving induction chemotherapy and alloHCT recipients. Despite improvements in microbiome diversity, expansion of commensals, and shrinkage of potential pathogens, aGVHD occurred more frequently after FMT than placebo. Although this unexpected finding could be explained by clinical differences between the two arms, we asked whether a microbiota explanation might be also present. To this end, we performed multi-omics analysis of preintervention and postintervention gut microbiome and serum metabolome. We found that postintervention expansion of Faecalibacterium, a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, predicted a higher risk for aGVHD. Faecalibacterium expansion occurred predominantly after FMT and was due to engraftment of unique donor taxa, suggesting that donor Faecalibacterium-derived antigens might have stimulated allogeneic immune cells. Faecalibacterium and ursodeoxycholic acid (an anti-inflammatory secondary bile acid) were negatively correlated, offering an alternative mechanistic explanation. In conclusion, we demonstrate context dependence of microbiota effects where a normally beneficial bacteria may become detrimental in disease. While FMT is a broad, community-level intervention, it may need precision engineering in ecologically complex settings where multiple perturbations (e.g., antibiotics, intestinal damage, alloimmunity) are concurrently in effect. SIGNIFICANCE: Post-FMT expansion of Faecalibacterium, associated with donor microbiota engraftment, predicted a higher risk for aGVHD in alloHCT recipients. Although Faecalibacterium is a commensal genus with gut-protective and anti-inflammatory properties under homeostatic conditions, our findings suggest that it may become pathogenic in the setting of FMT after alloHCT. Our results support a future trial with precision engineering of the FMT product used as GVHD prophylaxis after alloHCT.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Graft vs Host Disease/microbiology , Graft vs Host Disease/immunology , Male , Female , Middle Aged , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Adult , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/microbiology , Leukemia, Myeloid, Acute/immunology , Transplantation, Homologous/methods , Transplantation, Homologous/adverse effects , Faecalibacterium , Aged , Acute Disease , Feces/microbiology , Metabolome , Multiomics
2.
Gut Microbes ; 16(1): 2327442, 2024.
Article in English | MEDLINE | ID: mdl-38478462

ABSTRACT

In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/genetics , Treatment Outcome , Drug Resistance, Microbial , Feces
SELECTION OF CITATIONS
SEARCH DETAIL