Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hemasphere ; 7(10): e957, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799345

ABSTRACT

Recent evidence revealed important interactions between clonal hematopoiesis (CH) and cellular therapies established for the treatment of hematologic malignancies. The impact of CH on safety, efficacy, and outcome of chimeric antigen receptor (CAR) T-cell therapy is currently under investigation. We analyzed 110 patients with relapsed/refractory B-cell non-Hodgkin lymphoma (n = 105) or acute lymphoblastic leukemia (ALL) (n = 5), treated with Axicabtagene-Ciloleucel (39%), Tisagenlecleucel (51%), or Brexucabtagene autoleucel (10%). Using error-corrected targeted sequencing, a high CH prevalence of 56.4% (variant allele frequency [VAF] ≥1%) at the time of CAR T-cell infusion was detected. The most frequently mutated gene was PPM1D followed by DNMT3A, TET2, ASXL1, and TP53. Variant allele frequencies were significantly lower in B and T cells compared with monocytes and granulocytes. CH did not increase the risk of CAR T-related toxicities. The incidences of cytokine release syndrome and immune effector-cell-associated neurotoxicity syndrome were similar between CHpos and CHneg patients, regardless of clone size, age, or CAR T product. Prolonged cytopenias were not associated with CH. Best overall response rates (ORRs) were numerically but not significantly higher in CHpos patients (ORR 76.7% versus 62.2%; P = 0.13). Furthermore, CH status did not predict progression-free survival or overall survival. Lastly, sequential analysis showed a modest VAF increase of 1.3% and acquisition of novel mutations within 100 days postinfusion. CH was frequent in large B-cell lymphoma/ALL patients receiving CAR T-cells but did not affect toxicity nor treatment response or outcome.

2.
Int J Cancer ; 151(4): 565-577, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35484982

ABSTRACT

Myxofibrosarcoma (MFS) is a rare subtype of sarcoma, whose genetic basis is poorly understood. We analyzed 69 MFS cases using whole-genome (WGS), whole-exome (WES) and/or targeted-sequencing (TS). Newly sequenced genomic data were combined with additional deposited 116 MFS samples. WGS identified a high number of structural variations (SVs) per tumor most frequently affecting the TP53 and RB1 loci, 40% of tumors showed a BRCAness-associated mutation signature, and evidence of chromothripsis was found in all cases. Most frequently mutated/copy number altered genes affected known disease drivers such as TP53 (56.2%), CDKN2A/B (29.7%), RB1 (27.0%), ATRX (19.5%) and HDLBP (18.9%). Several previously unappreciated genetic aberrations including MUC17, FLG and ZNF780A were identified in more than 20% of patients. Longitudinal analysis of paired diagnosis and relapse time points revealed a 1.2-fold mutation number increase accompanied with substantial changes in clonal composition over time. Our study highlights the genetic complexity underlying sarcomagenesis of MFS.


Subject(s)
Fibrosarcoma , Sarcoma , Soft Tissue Neoplasms , Adult , DNA Copy Number Variations , Exome , Fibrosarcoma/genetics , Humans , Mutation , Neoplasm Recurrence, Local/genetics , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Exome Sequencing
3.
Cancers (Basel) ; 14(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35406464

ABSTRACT

The number of treatment options for acute myeloid leukemia (AML) has greatly increased since 2017. This development is paralleled by the broad implantation of genetic profiling as an integral part of clinical studies, enabling us to characterize mutation-response, mutation-non-response, or mutation-relapse patterns. The aim of this review is to provide a concise overview of the current state of knowledge with respect to newly approved AML treatment options and the association of response, relapse and resistance with genetic alterations. Specifically, we will highlight current genetic data regarding FLT3 inhibitors, IDH inhibitors, hypomethylating agents (HMA), the BCL-2 inhibitor venetoclax (VEN), the anti-CD33 antibody conjugate gemtuzumab ozogamicin (GO) and the liposomal dual drug CPX-351.

4.
J Clin Oncol ; 37(5): 375-385, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30403573

ABSTRACT

PURPOSE: Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT). METHODS: We collected blood samples from 500 healthy, related HSCT donors (age ≥ 55 years) at the time of stem-cell donation for targeted sequencing with a 66-gene panel. The effect of donor CHIP was assessed on recipient outcomes, including graft-versus-host disease (GVHD), cumulative incidence of relapse/progression (CIR/P), and overall survival (OS). RESULTS: A total of 92 clonal mutations with a median variant allele frequency of 5.9% were identified in 80 (16.0%) of 500 donors. CHIP prevalence was higher in donors related to patients with myeloid compared with lymphoid malignancies (19.2% v 6.3%; P ≤ .001). In recipients allografted with donor CHIP, we found a high cumulative incidence of chronic GVHD (cGVHD; hazard ratio [HR], 1.73; 95% CI, 1.21 to 2.49; P = .003) and lower CIR/P (univariate: HR, 0.62; 95% CI, 0.40 to 0.97; P = .027; multivariate: HR, 0.63; 95% CI, 0.41 to 0.98; P = .042) but no effect on nonrelapse mortality. Serial quantification of 25 mutations showed engraftment of 24 of 25 clones and disproportionate expansion in half of them. Donor-cell leukemia was observed in two recipients. OS was not affected by donor CHIP status (HR, 0.88; 95% CI, 0.65 to 1.321; P = .434). CONCLUSION: Allogeneic HSCT from donors with CHIP seems safe and results in similar survival in the setting of older, related donors. Future studies in younger and unrelated donors are warranted to extend these results. Confirmatory studies and mechanistic experiments are warranted to challenge the hypothesis that donor CHIP might foster cGVHD development and reduce relapse/progression risk.


Subject(s)
Hematologic Neoplasms/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/physiology , Unrelated Donors , Age Factors , Aged , Female , Gene Frequency , Graft vs Host Disease/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/cytology , Humans , Male , Middle Aged , Mutation , Retrospective Studies , Transplantation, Homologous , Treatment Outcome
5.
Hum Brain Mapp ; 35(11): 5356-67, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24862560

ABSTRACT

BACKGROUND: The serotonin transporter (5-HTT) and the 5-HTTLPR/rs25531 polymorphisms in its gene (SLC6A4) have been associated with depression, increased stress-response, and brain structural alterations such as reduced hippocampal volumes. Recently, epigenetic processes including SLC6A4 promoter methylation were shown to be affected by stress, trauma, or maltreatment and are regarded to be involved in the etiology of affective disorders. However, neurobiological correlates of SLC6A4 promoter methylation have never been studied or compared to genotype effects by means of human neuroimaging hitherto METHODS: Healthy subjects were recruited in two independent samples (N = 94, N = 95) to obtain structural gray matter images processed by voxel-based morphometry (VBM8), focusing on hippocampal, amygdala, and anterior cingulate gyrus gray matter structure. SLC6A4 promoter methylation within an AluJb element and 5-HTTLPR/rs25531 genotypes were analyzed in view of a possible impact on local gray matter volume RESULTS: Strong associations of AluJb methylation and hippocampal gray matter volumes emerged within each sample separately, which in the combined sample withstood most conservative alpha-corrections for the entire brain. The amygdala, insula, and caudate nucleus showed similar associations. The 5-HTTLPR/rs25531 showed no main effect on gray matter, and the effect of methylation rates on hippocampal structure was comparable among the genotype groups CONCLUSIONS: Methylation within the AluJb appears to have strong effects on hippocampal gray matter volumes, indicating that epigenetic processes can alter brain structures crucially involved in stress-related disorders. Different ways of regulating SLC6A4 expression might involve exonization or transcription factor binding as potentially underlying mechanisms, which, however, is speculative and warrants further investigation.


Subject(s)
DNA Methylation/physiology , Gray Matter/anatomy & histology , Hippocampus/anatomy & histology , Polymorphism, Genetic/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Brain Mapping , Female , Genotype , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...