Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 7: 119, 2016.
Article in English | MEDLINE | ID: mdl-26904081

ABSTRACT

While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to (1) segment radial plant organs into individual cells, (2) classify cells into cell type categories based upon Random Forest classification, (3) divide each cell into sub-regions, and (4) quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

2.
Development ; 141(22): 4311-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25371365

ABSTRACT

The class I KNOX transcription factors SHOOT MERISTEMLESS (STM) and KNAT1 are important regulators of meristem maintenance in shoot apices, with a dual role of promoting cell proliferation and inhibiting differentiation. We examined whether they control stem cell maintenance in the cambium of Arabidopsis hypocotyls, a wood-forming lateral meristem, in a similar fashion as in the shoot apical meristem. Weak loss-of-function alleles of KNAT1 and STM led to reduced formation of xylem fibers - highly differentiated cambial derivatives - whereas cell proliferation in the cambium was only mildly affected. In a knat1;stm double mutant, xylem fiber differentiation was completely abolished, but residual cambial activity was maintained. Expression of early and late markers of xylary cell differentiation was globally reduced in the knat1;stm double mutant. KNAT1 and STM were found to act through transcriptional repression of the meristem boundary genes BLADE-ON-PETIOLE 1 (BOP1) and BOP2 on xylem fiber differentiation. Together, these data indicate that, in the cambium, KNAT1 and STM, contrary to their function in the shoot apical meristem, promote cell differentiation through repression of BOP genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Plant/physiology , Homeodomain Proteins/metabolism , Hypocotyl/cytology , Meristem/growth & development , Transcription Factors/metabolism , Cambium/cytology , Cell Differentiation/physiology , Cell Proliferation/physiology , Gene Expression Regulation, Plant/genetics , Immunohistochemistry , Real-Time Polymerase Chain Reaction
3.
Plant J ; 74(1): 134-47, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23294247

ABSTRACT

The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.


Subject(s)
Arabidopsis/cytology , Cell Wall/metabolism , Epitopes/analysis , Plant Stems/growth & development , Arabidopsis/growth & development , Cluster Analysis , Immunohistochemistry , Inflorescence/cytology , Inflorescence/growth & development , Plant Stems/cytology
4.
Plant Physiol ; 154(3): 1428-38, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20807862

ABSTRACT

Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cell Wall/metabolism , Plant Stems/cytology , Transcription Factors/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Inflorescence/cytology , Lignin/biosynthesis , Mutation , Oligonucleotide Array Sequence Analysis , RNA, Plant/genetics , Transcription Factors/genetics , Transcriptional Activation
5.
Mol Plant Pathol ; 8(5): 581-94, 2007 Sep.
Article in English | MEDLINE | ID: mdl-20507523

ABSTRACT

SUMMARY The mitogen-activated protein kinase, SIPK (salicylic acid-induced protein kinase), is known to be rapidly activated in tobacco (Nicotiana tabacum) by various elicitors. However, SIPK activation induced by the oomycete elicitor, beta-megaspermin, is reported to require external calcium influx, whereas that induced by the bacterial elicitor, hrpZ(Psph), does not. This suggests that SIPK activation is involved in different elicitor-initiated signalling pathways, and raises the question of whether the role(s) of SIPK in mediating stress outcomes, including transcriptional re-programming, differs in an elicitor-specific manner. To examine this, we compared the impact of silencing SIPK on the transcript profile of tobacco suspension culture cells challenged with either hrpZ(Psph) or beta-megaspermin. SIPK-silencing was found to have a substantial impact on both hrpZ(Psph)- and beta-megaspermin-induced transcriptional responses, and these impacts included both common and elicitor-differentiated features. As well as revealing a role for SIPK in modulating expression of known redox- and defence-related genes in response to both elicitors, our analysis detected a substantial impact of SIPK silencing on transcription of 80S ribosomal subunit mRNAs. This novel observation suggests that SIPK may play a role in affecting translation efficiency as one mechanism for enacting rapid genome-wide, elicitor-specific physiological reprogramming during defence responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...