Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Front Physiol ; 15: 1286366, 2024.
Article in English | MEDLINE | ID: mdl-38370014

ABSTRACT

Regular waterpipe smoking (Reg-WPS) is well recognized for its deleterious effect on the heart. However, there is a paucity of experimental studies on the impact of occasional waterpipe smoking (Occ-WPS), also known as nondaily smoking, versus Reg-WPS on cardiac homeostasis, and the mechanisms underlying these effects. Hence, we aimed, in the present study, to investigate the effect of Occ-WPS (30 min/day, 1 day/week) versus Reg-WPS (30 min/day, 5 days/week) for 6 months on systolic blood pressure (SBP), cardiac injury, oxidative markers, chemokines, proinflammatory cytokines, DNA damage and mitochondrial function compared with air (control) exposed mice. Our results show that SBP was increased following exposure to either Occ-WPS or Reg-WPS compared with air-exposed mice. Moreover, we found that only Reg-WPS induced a significant elevation in the levels of troponin I, brain natriuretic peptide, lactate dehydrogenase, and creatine phosphokinase. However, the atrial natriuretic peptide (ANP) was significantly increased in both Occ-WPS and Reg-WPS groups. Compared with air-exposed mice, the levels of lipid peroxidation, reduced glutathione and monocyte chemoattractant protein-1 were only significantly augmented in the Reg-WPS. However, catalase, superoxide dismutase, and CXCL1 were significantly increased in both Occ-WPS and Reg-WPS. The concentrations of the adhesion molecules E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 were solely elevated in the heart of mice exposed to Reg-WPS. Similarly, the concentrations of interleukin-1ß and tumor necrosis factor α were only significantly augmented in the Reg-WPS. However, both Occ-WPS and Reg-WPS triggered significant augmentation in the levels of IL17 and DNA damage compared to the control groups. Furthermore, while Occ-WPS induced a slight but statistically insignificant elevation in the concentrations of mammalian targets of rapamycin and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression, Reg-WPS exposure increased their levels substantially, in addition to p53 and mitochondrial complexes II & III, and IV activities compared with air-exposed mice. In conclusion, our findings show that while the long-term Occ-WPS exposure induced an elevation of SBP, ANP, antioxidant enzymes, IL17, CXCL1, and cardiac DNA damage, Reg-WPS exposure was consistently associated with the elevation of SBP and occurrence of cardiac damage, inflammation, oxidative stress, DNA damage and mitochondrial dysfunction.

2.
Biomedicines ; 11(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37189722

ABSTRACT

Waterpipe smoking (WPS) is prevalent in Asian and Middle Eastern countries and has recently gained worldwide popularity, especially among youth. WPS has potentially harmful chemicals and is associated with a wide range of adverse effects on different organs. However, little is known regarding the impact of WPS inhalation on the brain and especially on the cerebellum. Presently, we aimed at investigating inflammation, oxidative stress and apoptosis as well as microgliosis and astrogliosis in the cerebellum of BALB/C mice chronically (6 months) exposed to WPS compared with air-exposed mice (control). WPS inhalation augmented the concentrations of proinflammatory cytokines tumor necrosis factor, interleukin (IL)-6 and IL-1ß in cerebellar homogenates. Likewise, WPS increased oxidative stress markers including 8-isoprostane, thiobarbituric acid reactive substances and superoxide dismutase. In addition, compared with the air-exposed group, WPS caused an increase in the oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine, in cerebellar homogenates. Similarly, in comparison with the air group, WPS inhalation elevated the cerebellar homogenate levels of cytochrome C, cleaved caspase-3 and nuclear factor-κB (NF-κB). Immunofluorescence analysis of the cerebellum showed that WPS exposure significantly augmented the number of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein-positive microglia and astroglia, respectively. Taken together, our data show that chronic exposure to WPS is associated with cerebellar inflammation, oxidative stress, apoptosis, microgliosis and astrogliosis. These actions were associated with a mechanism involving NF-κB activation.

3.
Cell Physiol Biochem ; 56(1): 13-27, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35041781

ABSTRACT

BACKGROUND/AIMS: Waterpipe smoke (WPS) is the second most prevalent form of smoking in the world. There are ample evidences about the vascular alterations caused by regular WPS (Reg-WPS). Nonetheless, comparison of the chronic vascular response induced by regular versus occasional WPS (Occ-WPS) exposure is very scarce. METHODS: We investigated, in BALB/c mice, the effects of Occ-WPS (30 minutes/day, 1 day/week) versus Reg-WPS (30 minutes/day, 5 days/week) for 6 months on thrombogenicity and platelet aggregation in vivo and in vitro. Moreover, various markers of endothelial integrity, inflammation and oxidative stress were assessed by enzyme-linked immunosorbent assay and colorimetric assay. Control mice were exposed to air. RESULTS: Our results showed that either Occ-WPS or Reg-WPS exposure shortened the thrombotic time in pial microvessels in vivo. Moreover, in pial venules, this effect was more marked in Reg-WPS group (-47%) compared with Occ-WPS (-34%). Similarly, exposure to either Occ-WPS or Reg-WPS reduced the prothrombin time and activated partial thromboplastin time. Platelet count was increased only in Reg-WPS exposure. Exposure to either Occ-WPS or Reg-WPS induced platelet aggregation in vitro. In addition, there was a statistically significant difference between Occ-WPS and Reg-WPS groups in platelet count and aggregation. Plasma concentration of tissue factor (+98%), P-selectin (+14%) and E-selectin (+16%) were significantly increased in Occ-WPS group compared with air exposed group. Likewise, compared with air group Reg-WPS caused an increase in concentration of tissue factor (+193%), P-selectin (+21%) and E-selectin (+42%). Nevertheless, only Reg-WPS induced a decrease (-38%) in the plasma concentration of tissue plasminogen activator. Notably, our results showed a statistically significant difference between Occ-WPS and Reg-WPS groups in the concentration of tissue factor. Erythrocyte numbers, hemoglobin concentration, hematocrit and lactate dehydrogenase activity were augmented only in Reg-WPS group compared with either control or Occ-WPS groups. Likewise, only Reg-WPS induced an increase in proinflammatory cytokines, tumor necrosis factor-α and interleukin-1ß compared with either control or Occ-WPS groups. However, markers of oxidative stress including 8-isoprostane and total antioxidants were enhanced in both Occ-WPS and Reg-WPS compared with control group. CONCLUSION: Our data confirm the vascular toxicity of the chronic Reg-WPS exposure and shows that even occasional chronic exposure to WPS caused thrombosis, platelet aggregation, endothelial alterations and oxidative stress. The latter findings are an additional cause of concern about the long-term toxicity of occasional waterpipe smoking.


Subject(s)
Blood Platelets , Oxidative Stress , Platelet Aggregation , Water Pipe Smoking , Animals , Female , Male , Mice , Blood Platelets/metabolism , E-Selectin/blood , Mice, Inbred BALB C , P-Selectin/blood , Prothrombin Time , Thromboplastin/metabolism , Water Pipe Smoking/adverse effects , Water Pipe Smoking/blood
4.
Biomolecules ; 13(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36671407

ABSTRACT

The development of animal models to study cell death in the brain is a delicate task. One of the models, that was discovered in the late eighties, is the induction of neurodegeneration through glucocorticoid withdrawal by adrenalectomy in albino rats. Such a model is one of the few noninvasive models for studying neurodegeneration. In the present study, using stereological technique and ultrastructural examination, we aimed to investigate the impact of short-term adrenalectomy (2 weeks) on different hippocampal neuronal populations in Wistar rats. In addition, the underlying mechanism(s) of degeneration in these neurons were investigated by measuring the levels of insulin-like growth factor-1 (IGF-1) and ß-nerve growth factor (ß-NGF). Moreover, we examined whether the biochemical and histological changes in the hippocampus, after short-term adrenalectomy, have an impact on the cognitive behavior of Wistar rats. Stereological counting in the hippocampus revealed significant neuronal deaths in the dentate gyrus and CA4/CA3, but not in the CA2 and CA1 areas, 7 and 14 days post adrenalectomy. The ultrastructural examinations revealed degenerated and degenerating neurons in the dentate, as well as CA4, and CA3 areas, over the course of 3, 7 and 14 days. The levels of IGF-1 were significantly decreased in the hippocampus of ADX rats 24 h post adrenalectomy, and lasted over the course of two weeks. However, ß-NGF was not affected in rats. Using a passive avoidance task, we found a cognitive deficit in the ADX compared to the SHAM operated rats over time (3, 7, and 14 days). In conclusion, both granule and pyramidal cells were degenerated in the hippocampus following short-term adrenalectomy. The early depletion of IGF-1 might play a role in hippocampal neuronal degeneration. Consequently, the loss of the hippocampal neurons after adrenalectomy leads to cognitive deficits.


Subject(s)
Adrenalectomy , Insulin-Like Growth Factor I , Animals , Rats , Rats, Wistar , Insulin-Like Growth Factor I/metabolism , Hippocampus/metabolism , Neurons/metabolism
5.
Commun Biol ; 4(1): 779, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34163009

ABSTRACT

The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.


Subject(s)
Body Water/metabolism , Camelus/physiology , Cholesterol/physiology , Kidney/metabolism , Animals , Aquaporin 2/physiology , Dehydration/metabolism , Desert Climate , Lipid Metabolism , Male , Proteome , Sodium-Potassium-Exchanging ATPase/physiology , Transcriptome
6.
Oxid Med Cell Longev ; 2021: 8845607, 2021.
Article in English | MEDLINE | ID: mdl-33510843

ABSTRACT

Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation events in mice with adenine (0.2% w/w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the concentrations of troponin I, tumor necrosis factor-α, and interleukin-1ß in heart homogenates. It also augmented the levels of markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug treatment thereon.


Subject(s)
Blood Coagulation , Gene Expression Regulation , Myocarditis/metabolism , NF-E2-Related Factor 2/biosynthesis , Oxidative Stress , Renal Insufficiency, Chronic/metabolism , Animals , Disease Models, Animal , Male , Mice , Myocarditis/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neutrophils/metabolism , Neutrophils/pathology , Renal Insufficiency, Chronic/pathology
7.
Nutrients ; 10(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495362

ABSTRACT

Numerous studies have shown that acute particulate air pollution exposure is linked with pulmonary adverse effects, including alterations of pulmonary function, inflammation, and oxidative stress. Nootkatone, a constituent of grapefruit, has antioxidant and anti-inflammatory effects. However, the effect of nootkatone on lung toxicity has not been reported so far. In this study we evaluated the possible protective effects of nootkatone on diesel exhaust particles (DEP)-induced lung toxicity, and the possible mechanisms underlying these effects. Mice were intratracheally (i.t.) instilled with either DEP (30 µg/mouse) or saline (control). Nootkatone was given to mice by gavage, 1 h before i.t. instillation, with either DEP or saline. Twenty-four hours following DEP exposure, several physiological and biochemical endpoints were assessed. Nootkatone pretreatment significantly prevented the DEP-induced increase in airway resistance in vivo, decreased neutrophil infiltration in bronchoalveolar lavage fluid, and abated macrophage and neutrophil infiltration in the lung interstitium, assessed by histolopathology. Moreover, DEP caused a significant increase in lung concentrations of 8-isoprostane and tumor necrosis factor α, and decreased the reduced glutathione concentration and total nitric oxide activity. These actions were all significantly alleviated by nootkatone pretreatment. Similarly, nootkatone prevented DEP-induced DNA damage and prevented the proteolytic cleavage of caspase-3. Moreover, nootkatone inhibited nuclear factor-kappaB (NF-κB) induced by DEP. We conclude that nootkatone prevented the DEP-induced increase in airway resistance, lung inflammation, oxidative stress, and the subsequent DNA damage and apoptosis through a mechanism involving inhibition of NF-κB activation. Nootkatone could possibly be considered a beneficial protective agent against air pollution-induced respiratory adverse effects.


Subject(s)
Lung Injury/drug therapy , NF-kappa B/metabolism , Particulate Matter/toxicity , Protective Agents/pharmacology , Sesquiterpenes/pharmacology , Vehicle Emissions/toxicity , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Bronchoalveolar Lavage Fluid , Caspase 3/metabolism , Citrus paradisi/chemistry , Comet Assay , DNA Damage/drug effects , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Glutathione/metabolism , Lung/drug effects , Lung Injury/chemically induced , Mice , Mice, Inbred BALB C , Neutrophil Infiltration/drug effects , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Polycyclic Sesquiterpenes , Tumor Necrosis Factor-alpha/metabolism
8.
BMC Neurosci ; 17(1): 61, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27586269

ABSTRACT

BACKGROUND: Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. RESULTS: Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1ß and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. CONCLUSION: Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.


Subject(s)
Adrenal Medulla/physiopathology , Cytokines/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Oxidative Stress/physiology , Adrenalectomy , Animals , Cell Death/physiology , Corticosterone/blood , Hippocampus/pathology , Male , Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Neuroimmunomodulation/physiology , Neurons/metabolism , Neurons/pathology , Rats, Wistar , Time Factors
9.
Cell Physiol Biochem ; 38(5): 1703-13, 2016.
Article in English | MEDLINE | ID: mdl-27160713

ABSTRACT

BACKGROUND/AIMS: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. METHODS: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP) on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks), which is known to involve inflammation and oxidative stress. DEP (0.5m/kg) was intratracheally (i.t.) instilled every 4th day for 4 weeks (7 i.t. instillation). Four days following the last exposure to either DEP or saline (control), various renal endpoints were measured. RESULTS: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. CONCLUSION: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Our data provide biological plausibility that air pollution aggravates chronic renal failure.


Subject(s)
DNA Damage/drug effects , Oxidative Stress/drug effects , Particulate Matter/toxicity , Adenine/toxicity , Animals , Antioxidants/metabolism , Blood Pressure/drug effects , Body Weight/drug effects , Catalase/metabolism , Creatinine/blood , Female , Inflammation , Kidney/drug effects , Kidney/pathology , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/pathology , Lipid Peroxidation/drug effects , Male , Mice , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urea/blood , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL