Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Curr Pharm Des ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39219120

ABSTRACT

INTRODUCTION: The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes. AIM: For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds. METHOD: The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days. RESULTS: The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas Low-Density Lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes. CONCLUSION: In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.

2.
Curr Pharm Des ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39129154

ABSTRACT

INTRODUCTION: Silver nanoparticles (AgNPs) have gained significance due to their practical use in the medicinal field, especially in the treatment of tumors and cancer. The current article explores a green synthetic method for the preparation of AgNPs using leaf extract of Euphorbia royleanas. METHODS: The synthesis was conducted at different parameters like concentration of AgNO3, pH, salt concentration, temperature and time to optimize best results for their biochemical applications. It was validated through UV-V spectroscopy (400-450 nm) with 1:3 (concentration ratio of leaf ethanolic extract and 1 mM AgNO3 solution) at a pH value of 8 at 35oC, which were the best optimization conditions. The FTIR spectral bands showed the presence of C-N and -OH functional groups, indicating that -OH stretching and the aliphatic -C-H stretching were involved in the reduction of Ag ions. The XRD pattern showed the face-centered cubic structure of silver nanoparticles. The results of SEM revealed that AgNPs were predominantly spherical in shape, mono-dispersed, and arranged in scattered form. EDX analysis testified the presence of metallic silver along with other elements like Cl, C, and O. RESULTS: The investigation of biochemical parameters showed that AgNPs were influential in the discoloration of dye wastewater (methylene blue ), where 80% of dye color was removed in 20 min, followed by the significant (p < 0.05) analgesic activity with an inhibition percentage of 86.45% at a dose of 500 mg/kg. CONCLUSION: Similarly, the antioxidant activity with the highest percent inhibition was 55.4% (p < 0.0001), shown by the AgNPs at 500 µg/mL. AgNPs showed a 30 mm zone of inhibition at 100 µl/mL against Aspergillus niger. It was concluded that AgNPs provide a baseline in medical technology for the treatment of simple to chronic diseases.

3.
Heliyon ; 10(15): e35501, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170427

ABSTRACT

The pervasive issue of heavy metal contamination in agricultural lands poses significant concerns and has wide-ranging implications for ecosystems. However, an encouraging solution lies in exploiting the potential of fungal endophytes to alleviate these detrimental effects. This study emphasized on improving the growth-promoting and chromium-alleviating capabilities of fungal endophytes, particularly Aspergillus sojae strain SH20, through ultraviolet (UV) irradiation. Following UV treatment, SH20 exhibited significantly enhanced growth-promoting and chromium-alleviating capabilities in comparison to its non-irradiated counterpart. Distinctly, the UV-treated SH20 strain demonstrated an improved ability to accumulate and reduce toxic chromate in the soil, effectively addressing the growth constraints imposed by elevated chromium levels in Brassica napus L. The UV-irradiated SH20 variant boosted shoot length up to 3 times that of the control. Similarly, this fungal strain displayed a remarkable increase in the total fresh weight of the seedlings, recording nearly 17 times greater than the control. The isolate treated with UV light reduced the absorption of chromium by about 3 times in the roots, helping the young plants to grow well even when exposed to chromate stress. A drop in root colonization by the UV-treated strain further resulted in reduced chromate absorption by the roots. Also, the strain showed great skill in boosting the host's antioxidant defenses by reducing the buildup of harmful reactive oxygen species (ROS), increasing the removal of ROS, and improving the plant's antioxidant levels, including phenols and flavonoids. When the host plants were exposed to 25 ppm of Cr stress, the UV-irradiated variant SH 20 stimulated the production of flavonoids (246 µg/ml) and phenols (952 µg/ml) in comparison to the control (with 220 µg/ml of flavonoids and 919 µg/ml of phenols). In conclusion, this report highlights how exposing the A. sojae strain SH20 to UV light has the potential to enhance its abilities to promote growth and bioremediate. This suggests a promising solution for addressing heavy metal contamination in agricultural lands.

4.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210254

ABSTRACT

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Subject(s)
Biodegradation, Environmental , Cadmium , Copper , Edetic Acid , Helianthus , Indoleacetic Acids , Soil Pollutants , Zea mays , Cadmium/metabolism , Edetic Acid/pharmacology , Copper/metabolism , Soil Pollutants/metabolism , Helianthus/metabolism , Helianthus/drug effects , Zea mays/metabolism , Zea mays/growth & development , Zea mays/drug effects , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Biomass , Soil/chemistry
5.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972980

ABSTRACT

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Subject(s)
Antioxidants , Aspergillus niger , Lead , Phosphates , Photosynthesis , Zea mays , Zea mays/growth & development , Zea mays/microbiology , Zea mays/drug effects , Zea mays/metabolism , Aspergillus niger/metabolism , Lead/metabolism , Antioxidants/metabolism , Photosynthesis/drug effects , Phosphates/metabolism , Soil Pollutants/metabolism , Stress, Physiological , Biodegradation, Environmental
6.
Front Plant Sci ; 15: 1391348, 2024.
Article in English | MEDLINE | ID: mdl-38952849

ABSTRACT

Introduction: Arsenate, a metalloid, acting as an analog to phosphate, has a tendency to accumulate more readily in plant species, leading to adverse effects. Methods: In the current study, sunflower seedlings were exposed to 25, 50 and 100 ppm of the arsenic. Results: Likewise, a notable reduction (p<0.05) was observed in the relative growth rate (RGR) by 4-folds and net assimilation rate (NAR) by 75% of Helianthus annuus when subjected to arsenic (As) stress. Nevertheless, the presence of Staphylococcus arlettae, a plant growth-promoting rhizobacterium with As tolerance, yielded an escalation in the growth of H. annuus within As-contaminated media. S. arlettae facilitated the conversion of As into a form accessible to plants, thereby, increasing its uptake and subsequent accumulation in plant tissues. S. arlettae encouraged the enzymatic antioxidant systems (Superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT)) and non-enzymatic antioxidants (flavonoids, phenolics, and glutathione) in H. annuus seedlings following substantial As accumulation. The strain also induced the host plant to produce osmolytes like proline and sugars, mitigating water loss and maintaining cellular osmotic balance under As-induced stress. S. arlettae rectified imbalances in lignin content, reduced high malonaldehyde (MDA) levels, and minimized electrolyte leakage, thus counteracting the toxic impacts of the metal. Conclusion: The strain exhibited the capability to concurrently encourage plant growth and remediate Ascontaminated growth media through 2-folds rate of biotransformation and bio-mobilization.

7.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39065806

ABSTRACT

Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.

8.
Heliyon ; 10(12): e33078, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988560

ABSTRACT

The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.

9.
Pharmaceuticals (Basel) ; 17(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38931372

ABSTRACT

Diabetes mellitus is a heterogeneous metabolic disorder that poses significant health and economic challenges across the globe. Polysaccharides, found abundantly in edible plants, hold promise for managing diabetes by reducing blood glucose levels (BGL) and insulin resistance. However, most of these polysaccharides cannot be digested or absorbed directly by the human body. Here we report the production of antidiabetic oligosaccharides from cress seed mucilage polysaccharides using yeast fermentation. The water-soluble polysaccharides extracted from cress seed mucilage were precipitated using 75% ethanol and fermented with Pichia pastoris for different time intervals. The digested saccharides were fractionated through gel permeation chromatography using a Bio Gel P-10 column. Structural analysis of the oligosaccharide fractions revealed the presence of galacturonic acid, rhamnose, glucuronic acid, glucose and arabinose. Oligosaccharide fractions exhibited the potential to inhibit α-amylase and α-glucosidase enzymes in a dose-dependent manner in vitro. The fraction DF73 exhibited strong inhibitory activity against α-amylase with IC50 values of 38.2 ± 1.12 µg/mL, compared to the positive control, acarbose, having an IC50 value of 29.18 ± 1.76 µg/mL. Similarly, DF72 and DF73 showed the highest inhibition of α-glucosidase, with IC50 values of 9.26 ± 2.68 and 50.47 ± 5.18 µg/mL, respectively. In in vivo assays in streptozotocin (STZ)-induced diabetic mice, these oligosaccharides significantly reduced BGL and improved lipid profiles compared to the reference drug metformin. Histopathological observations of mouse livers indicated the cytoprotective effects of these sugars. Taken together, our results suggest that oligosaccharides produced through microbial digestion of polysaccharides extracted from cress seed mucilage have the potential to reduce blood glucose levels, possibly through inhibition of carbohydrate-digesting enzymes and regulation of the various signaling pathways.

10.
BMC Complement Med Ther ; 24(1): 217, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844985

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory condition characterized by the accumulation of reactive oxygen species and the expression of inflammatory factors. Regarding its anti-atopic activity, numerous traditional medicinal materials and secondary metabolic products play pivotal roles in modulating the associated mechanisms. METHODS: This study aimed to utilize Salvia miltiorrhiza Bunge (SMB) as an anti-AD source. In-vitro activity assessments and qualitative and quantitative analyses using UPLC-TQ-MS/MS and HPLC-DAD were conducted in two cultivars ('Dasan' and 'Kosan'). Statistical analysis indicated that the profiles of their secondary metabolites contribute significantly to their pharmacological properties. Consequently, bio-guided fractionation was undertaken to figure out the distinct roles of the secondary metabolites present in SMB. RESULTS: Comparative study of two cultivars indicated that 'Dasan', having higher salvianolic acid A and B, exhibited stronger antioxidant and anti-inflammatory activities. Meanwhile, 'Kosan', containing higher tanshinones, showed higher alleviating activities on anti-AD related genes in mRNA levels. Additionally, performed bio-guided fractionation re-confirmed that the hydrophilic compounds of SMB can prevent AD by inhibiting accumulation of ROS and suppressing inflammatory factors and the lipophilic components can directly inhibit AD. CONCLUSIONS: SMB was revealed as a good source for anti-AD activity. Several bioactive compounds were identified from the UPLC-TQ-MS/MS and different compounds content was linked to biological activities. Characterization of these compounds may be helpful to understand differential role of secondary metabolites from SMB on alleviation of AD.


Subject(s)
Anti-Inflammatory Agents , Dermatitis, Atopic , Plant Extracts , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Dermatitis, Atopic/drug therapy , Plant Extracts/pharmacology , Humans , Anti-Inflammatory Agents/pharmacology , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism
11.
Curr Pharm Des ; 30(17): 1307-1316, 2024.
Article in English | MEDLINE | ID: mdl-38629357

ABSTRACT

BACKGROUND: Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM: The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS: For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS: The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION: In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Lipase , Microbial Sensitivity Tests , Peptide Hydrolases , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Lipase/metabolism , Lipase/biosynthesis , Anti-Bacterial Agents/pharmacology , Peptide Hydrolases/metabolism , Peptide Hydrolases/biosynthesis , Surgical Wound Infection/microbiology , Surgical Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/drug therapy , Male , Female , Adult , Middle Aged , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification
12.
RSC Adv ; 14(7): 4406-4415, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38312718

ABSTRACT

Nanoscale science represents a thriving field of research for environmental applications within materials science. This study focuses on the fabrication of pure and La-doped nickel oxide (NiO) nanostructures with varying concentrations (1.0, 2.0, 3.0, and 4.0 wt%) of lanthanum using a facile sol-gel technique. This study explores the structural, morphological, chemical composition, and optical characteristics of the resulting pure and La-doped NiO nanostructures. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, UV-visible spectroscopy, and photoluminescence (PL) spectroscopy were used for material analysis. The observed trend in the energy band gap (Eg) values demonstrates a continuous decrease up to a La-doping concentration of 3 wt% in NiO. However, after this concentration (at 4.0 wt%), there is a noticeable increase in the energy band gap. At lower La-doping concentrations (up to 3 wt%), the incorporation of La ions into the NiO lattice may result in the formation of defects and oxygen vacancies. The presence of these imperfections may lead to new energy levels into the band gap, resulting in partial filling and a subsequent reduction in the band gap. Beyond a specific doping concentration (e.g., 3 wt%), excess La atoms may aggregate or cluster inside the NiO lattice. This agglomeration may cause structural distortions, strain, and disturbances in the crystal lattice, resulting in an increase in the band gap. The 3 wt% La-doped NiO sample demonstrated a notable 84% degradation efficiency of the synthesized nanomaterials coupled with its inherent stability, highlighting its dual attributes of effective pollutant removal and sustained performance. Furthermore, the cyclic stability of the optimized nanostructure is anticipated to be ∼77.42% after six cycles, suggesting promising future applications in photocatalysis.

13.
Curr Pharm Des ; 29(41): 3324-3339, 2023.
Article in English | MEDLINE | ID: mdl-38111115

ABSTRACT

INTRODUCTION: In the present study, we aimed to investigate the extraction and identification of the potential phytochemicals from the Methanolic Extract of Dryopteris ramosa (MEDR) using GC-MS profiling for validating the traditional uses of MEDR its efficacy in inflammations by using in-vitro, in-vivo and in silico approaches in anti-inflammatory models. METHODS: GC-MS analysis confirmed the presence of a total of 59 phytochemical compounds. The human red blood cells (HRBC) membrane stabilization assay and heat-induced hemolysis method were used as in-vitro anti-inflammatory activity of the extract. The in-vivo analysis was carried out through the Xylene-induced mice ear oedema method. It was found that MEDR at a concentration of 20 µg, 30 µg, and 40 µg showed 35.45%, 36.01%, and 36.33% protection to HRBC in a hypotonic solution, respectively. At the same time, standard Diclofenac at 30 µg showed 45.31% protection of HRBC in a hypotonic solution. RESULTS: The extract showed inhibition of 25.32%, 26.53%, and 33.31% cell membrane lysis at heating at 20 µg, 30 µg, and 40 µg, respectively. In comparison, standard Diclofenac at 30 µg showed 50.49% inhibition of denaturation to heat. Methanolic extract of the plant exhibited momentous inhibition in xylene-induced ear oedema in mice treated with 30 µg extract were 47.2%, 63.4%, and 78.8%, while inhibition in mice ear oedema treated with 60 µg extract was 34.7%, 43.05%, 63.21% and reduction in ear thickness of standard drug were 57.3%, 59.54%, 60.42% recorded at the duration of 1, 4 and 24 hours of inflammation. Molecular docking and simulations were performed to validate the anti-inflammatory role of the phytochemicals that revealed five potential phytochemicals i.e. Stigmasterol,22,23dihydro, Heptadecane,8methyl, Pimaricacid, Germacrene and 1,3Cyclohexadiene,_5(1,5dimethyl4hexenyl)-2methyl which revealed potential or significant inhibitory effects on cyclooxygenase-2 (COX-2), tumour necrosis factor (TNF-α), and interleukin (IL-6) in the docking analysis. CONCLUSION: The outcome of the study signifies that MEDR can offer a new prospect in the discovery of a harmonizing and alternative therapy for inflammatory disease conditions.


Subject(s)
Dryopteris , Mice , Humans , Animals , Xylenes/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Molecular Docking Simulation , Diclofenac/adverse effects , Hypotonic Solutions/adverse effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Methanol/adverse effects , Tumor Necrosis Factor-alpha
14.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38139804

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE: In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS: These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS: Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS: The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.

15.
ACS Omega ; 8(39): 35956-35963, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810636

ABSTRACT

The present work reports the photocatalytic degradation of alizarin red (AR) using Cu-doped manganese oxide (MH16-MH20) nanomaterials as catalysts under UV light irradiation. Cu-doped manganese oxides were synthesized by a very facile hydrothermal approach and characterized by energy dispersive X-ray spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis spectroscopy, and photoluminescence techniques. The structural, morphological, and optical characterization revealed that the synthesized compounds are nanoparticles (38.20-54.10 nm), grown in high mesoporous density (constant C > 100), possessing a tetragonal phase, and exhibiting 2.98-3.02 eV band gap energies. Synthesized materials were utilized for photocatalytic AR dye degradation under UV light which was monitored by UV-visible spectroscopy and % AR degradation was calculated at various time intervals from absorption spectra. More than 60% AR degradation at various time intervals was obtained for MH16-MH20 indicating their good catalytic efficiencies for AR removal. However, MH20 was found to be the most efficient catalyst showing more than 84% degradation, hence MH20 was used to investigate the effect of various catalytic doses, AR concentrations, and pH of the medium on degradation. More than 50% AR degradation was obtained for all studied parameters with MH20 whereas the pseudo-first-order kinetic model was found to be the best-fitted kinetic model for AR degradation with k = 0.0015 and R2 = 0.99 indicating a significant correlation between experimental data.

16.
Plant Physiol Biochem ; 201: 107826, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331076

ABSTRACT

A rhizobacterium, Pantoea conspicua, was examined against sunflower seedlings' growth under arsenate stress. Sunflower upon exposure to arsenate resulted in compromised growth that might be due to the accumulation of higher concentrations of arsenate and reactive oxygen species (ROS) in seedlings' tissues. The deposited arsenate led to oxidative damage and electrolyte leakage, making the sunflower seedlings vulnerable to compromise its growth and development. However, inoculation of sunflower seedlings with P. conspicua alleviated arsenate stress in host by initiating a multilayered defence mechanism. In fact, P. conspicua filtered out 75.1% of the arsenate from growth medium that were available to the plant roots in the absence of the said strain. To accomplish such activity, P. conspicua secreted exopolysaccharides as well as altered lignification in host roots. The arsenate (24.9%) that made its way to plant tissues was countered by helping the host seedlings to produce higher levels of indole acetic acid, non enzymatic antioxidants (phenolics and flavonoids) and antioxidant enzymes (catalase, ascorbte peroxidase, peroxidase, superoxide dismutase). As a result, ROS accumulation and electrolyte leakage were brought back to normal levels as observed in control seedlings. Hence, the rhizobacterium associated host seedlings achieved higher net assimilation (127.7%) and relative growth rate (113.5%) under 100 ppm of arsenate stress. The work concluded that P. conspicua alleviated arsenate stress in the host plants by imposing physical barrier as well as improving host seedlings' physiology and biochemistry.


Subject(s)
Arsenates , Helianthus , Helianthus/metabolism , Reactive Oxygen Species , Antioxidants/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Seedlings/metabolism , Plant Roots/metabolism
17.
Molecules ; 28(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37241943

ABSTRACT

Green synthesis is the most effective and environmentally friendly way to produce nanoparticles. The present research aimed at the biosynthesizing of silver nanoparticles (AgNPs) using Tribulus terrestris seed extract as the reducing and stabilizing agent and investigating their anti-diabetic properties. Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to analyze the synthesized silver nanoparticles from Tribulus terrestris (TT-AgNPs). The spectroscopic characterization revealed a surface Plasmon resonance band at 380 nm, which verified the development of TT-AgNPs. The transmittance peaks were observed at 596, 1450, 1631, 2856, 2921, and 3422 cm-1 through the FTIR spectrophotometer. The XRD spectrum showed four distinct diffraction peaks in the 2θ range at 20° to 60°. Intense peaks were at 26.32°, 30.70°, 44.70°, 56.07°, 53.75°, 66.28°, and 75.32°. The SEM analysis revealed that the prepared TT-AgNPs were clustered loosely with a smooth and spherical structure and were of relatively uniform size. The in vitro antidiabetic potential of TT-AgNPs was assessed by using glucose yeast uptake, glucose adsorption, and alpha-amylase assays. TT-AgNPs showed the highest activity (78.45 ± 0.84%) of glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of TT-AgNPs was 10.40 ± 0.52% at 30 mM, while in the alpha-amylase assay, TT-AgNPs exhibited the maximum activity of 75.68 ± 0.11% at 100 µg/mL. The results indicate a substantial anti-diabetic effect of the TT-AgNPs. Furthermore, the in vivo antidiabetic study was performed on TT-AgNPs in streptozotocin-induced diabetic mice. After receiving TT-AgNPs treatment for 30 days, the mice were sacrificed for biochemical and histological analyses of pancreatic and liver samples, which demonstrated a good improvement when compared to the control group. Mice treated with TT-AgNPs showed a significant drop in blood sugar levels, showing that the biosynthesized TT-AgNPs have effective anti-diabetic properties.


Subject(s)
Diabetes Mellitus, Experimental , Metal Nanoparticles , Tribulus , Mice , Animals , Metal Nanoparticles/chemistry , Hypoglycemic Agents/pharmacology , Silver/chemistry , Diabetes Mellitus, Experimental/drug therapy , Saccharomyces cerevisiae , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucose , Seeds , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology
18.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175475

ABSTRACT

Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.


Subject(s)
Ginsenosides , Panax , Humans , Ginsenosides/therapeutic use , Plant Extracts/chemistry , Panax/chemistry , MCF-7 Cells , Darkness , Lipopolysaccharides/pharmacology
19.
Plants (Basel) ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37111926

ABSTRACT

Abiotic stressors are global limiting constraints for plant growth and development. The most severe abiotic factor for plant growth suppression is salt. Among many field crops, maize is more vulnerable to salt, which inhibits the growth and development of plants and results in low productivity or even crop loss under extreme salinity. Consequently, comprehending the effects of salt stress on maize crop improvement, while retaining high productivity and applying mitigation strategies, is essential for achieving the long-term objective of sustainable food security. This study aimed to exploit the endophytic fungal microbe; Aspergillus welwitschiae BK isolate for the growth promotion of maize under severe salinity stress. Current findings showed that salt stress (200 mM) negatively affected chlorophyll a and b, total chlorophyll, and endogenous IAA, with enhanced values of chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline content, and lipid peroxidation in maize plants. However, BK inoculation reversed the negative impact of salt stress by rebalancing the chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), and proline content to optimal levels suitable for growth promotion and ameliorating salt stress in maize plants. Furthermore, maize plants inoculated with BK under salt stress had lower Na+, Cl- concentrations, lower Na+/K+ and Na+/Ca2+ ratios, and higher N, P, Ca2+, K+, and Mg2+ content than non-inoculated plants. The BK isolate improved the salt tolerance by modulating physiochemical attributes, and the root-to-shoot translocation of ions and mineral elements, thereby rebalancing the Na+/K+, Na+/Ca2+ ratio of maize plants under salt stress.

20.
Front Plant Sci ; 14: 1124827, 2023.
Article in English | MEDLINE | ID: mdl-37025137

ABSTRACT

The metabolome of strawberries at harvest determines their storage capacity. Therefore, dynamics of volatile production during storage of strawberry cultivated under diverse drainage ratios, T1 (12.0%), T2 (25.3%), T3 (36.4%), and T4 (56.5%), were evaluated. Among the various non-target VOCs analysis, there were some groups including aldehydes, esters, and furans occupied over 5% with exhibiting high coefficient of determination (R2 ) following the days after storage (DAS). Aldehydes content decreased over the storage period, while the esters (methyl butanoate, methyl hexanoate, ethyl hexanoate, and benzyl acetate) and furanones (furaneol and mesifuran) were increased as representing aroma compounds in strawberry ripening. Even on the same day, it was investigated that the release of VOCs linked to fruit decay was delayed in the groups (T1 and T2) that were given relatively little water compared to T3 and T4. The hexanal and ethyl hexanoate as an over-ripened signal showed a rapid increase from 4 DAS to 5 DAS in T3 and T4, respectively, while T1 and T2 showed significant increase from 5 DAS to 6 DAS. Relatively slower over-ripening tendency of T1 and T2 was supported by changes of firmness, total soluble solid content, anthocyanin content, and antioxidant activity during storage. T1 and T2 showed higher antioxidant activity at the harvest time and lower anthocyanin accumulation than T3 and T4. The present study elucidated that the preharvest drainage changes during cultivation was involved in fruit quality during strawberry storage. Besides, volatilomics analysis depicted that T2 as an optimal ratio, could delay the occurrence of stress and senescence, and guaranteed the strawberry yield. In conclusion, this study provided evidence that the practical application of drainage ratios could improve horticultural product quality even with low water use and VOCs might be considered an early indicator for strawberry fruit shelf-life.

SELECTION OF CITATIONS
SEARCH DETAIL