Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 178: 1-17, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38954985

ABSTRACT

Recent advances in cognitive neurosciences suggest that intrinsic brain networks dynamics are associated with cognitive functioning. Despite this emerging perspective, limited research exists to validate this hypothesis. This Registered Report aimed to specifically test the relationship between intrinsic brain spatio-temporal dynamics and executive functions. Resting-state EEG microstates were used to assess brain spatio-temporal dynamics, while a comprehensive battery of nine cognitive function tasks was employed to evaluate executive functions in 140 participants. We hypothesized that microstates (class C and D) metrics would correlate with an executive functions composite score. Contrary to expectations, our hypotheses were not supported by the data. We however observed a small, non-significant trend with a negative correlation between microstate D occurrences and executive functions scores (r = -.18, 95% CI [-.33, -.01]) which however did not meet the adjusted threshold for significance. In light of the inconclusive or minor effect sizes observed, the assertion that intrinsic brain networks dynamics - as measured by resting-state EEG microstate metrics - are a reliable signature of executive functioning remains unsupported.

2.
Sci Rep ; 12(1): 4618, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301388

ABSTRACT

Interest for neuromodulation, and transcranial random noise stimulation (tRNS) in particular, is growing. It concerns patients rehabilitation, but also healthy people who want or need to improve their cognitive and learning abilities. However, there is no consensus yet regarding the efficacy of tRNS on learning and performing a complex task. In particular, the most effective electrode montage is yet to be determined. Here, we examined the effect of two different tRNS montages on learning rate, short- and long-term performance in a video game (Space Fortress) that engages multiple cognitive abilities. Sixty-one participants were randomly assigned to one of three groups (sham vs. simple-definition tRNS vs. high-definition tRNS) in a double-blind protocol. Their performance on the Space Fortress task was monitored during a 15-day experiment with baseline (day 1), stimulation (day 2 to 4), short- (day 5) and long-term (day 15) evaluations. Our results show that the high-definition tRNS group improved more on the long term than simple-definition tRNS group, tended to learn faster and had better performance retention compared to both simple-definition tRNS and sham groups. This study is the first to report that high-definition tRNS is more effective than conventional simple-definition tRNS to enhance performance in a complex task.


Subject(s)
Transcranial Direct Current Stimulation , Cognition/physiology , Double-Blind Method , Humans , Intelligence , Learning/physiology , Transcranial Direct Current Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...