Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
World J Clin Oncol ; 14(6): 215-226, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37398545

ABSTRACT

BACKGROUND: Several studies report the useful therapeutic results of regional hyperthermia in association with chemotherapy (CHT) and radiotherapy for the treatment of pancreatic cancer. Modulated electro-hyperthermia (mEHT) is a new hyperthermia technique that induces immunogenic death or apoptosis of pancreatic cancer cells in laboratory experiments and increases tumor response rate and survival in pancreatic cancer patients, offering beneficial therapeutic effects against this severe type of cancer. AIM: To assess survival, tumor response and toxicity of mEHT alone or combined with CHT compared with CHT for the treatment of locally advanced or metastatic pancreatic cancer. METHODS: This was a retrospective data collection on patients affected by locally advanced or metastatic pancreatic cancer (stage III and IV) performed in 9 Italian centers, members of International Clinical Hyperthermia Society-Italian Network. This study included 217 patients, 128 (59%) of them were treated with CHT (no-mEHT) and 89 (41%) patients received mEHT alone or in association with CHT. mEHT treatments were performed applying a power of 60-150 watts for 40-90 min, simultaneously or within 72 h of administration of CHT. RESULTS: Median patients' age was 67 years (range 31-92 years). mEHT group had a median overall survival greater than non-mEHT group (20 mo, range 1.6-24, vs 9 mo, range 0.4-56.25, P < 0.001). mEHT group showed a higher number of partial responses (45% vs 24%, P = 0.0018) and a lower number of progressions (4% vs 31%, P < 0.001) than the no-mEHT group, at the three months follow-up. Adverse events were observed as mild skin burns in 2.6% of mEHT sessions. CONCLUSION: mEHT seems safe and has beneficial effects on survival and tumor response of stage III-IV pancreatic tumor treatment. Further randomized studies are warranted to confirm or not these results.

2.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047193

ABSTRACT

Chemotherapy- or inflammation-induced increase in intestinal permeability represents a severe element in disease evolution in patients suffering from colorectal cancer and gut inflammatory conditions. Emerging data strongly support the gut microbiota's role in preserving intestinal barrier integrity, whilst both chemotherapy and gut inflammation alter microbiota composition. Some probiotics might have a strong re-balancing effect on the gut microbiota, also positively affecting intestinal barrier integrity. In this study, we asked whether Limosilactobacillus fermentum ME-3 can prevent the intestinal paracellular permeability increase caused by the chemotherapeutic drug Irinotecan or by inflammatory stimuli, such as lipopolysaccharide (LPS). As an intestinal barrier model, we used a confluent and polarized Caco-2 cell monolayer and assessed the ME-3-induced effect on paracellular permeability by transepithelial electrical resistance (TEER) and fluorescent-dextran flux assays. The integrity of tight and adherens junctions was examined by confocal microscopy analysis. Transwell co-cultures of Caco-2 cells and U937-derived macrophages were used as models of LPS-induced intestinal inflammation to test the effect of ME-3 on release of the pro-inflammatory cytokines Tumor Necrosis Factor α, Interleukin-6, and Interleukin-8, was measured by ELISA. The results demonstrate that ME-3 prevents the IRI-induced increment in paracellular permeability, possibly by modulating the expression and localization of cell junction components. In addition, ME-3 inhibited both the increase in paracellular permeability and the release of pro-inflammatory cytokines in the co-culture model of LPS-induced inflammation. Our findings sustain the validity of L. fermentum ME-3 as a valuable therapeutic tool for preventing leaky gut syndrome, still currently without an available specific treatment.


Subject(s)
Limosilactobacillus fermentum , Humans , Caco-2 Cells , Lipopolysaccharides/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Permeability , Intestinal Mucosa/metabolism , Tight Junctions/metabolism
3.
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35682816

ABSTRACT

The microbiota is increasingly recognized as a critical player in cancer onset and progression and response to cancer chemotherapy treatment. In recent years, several preclinical and clinical studies have evidenced the involvement of microbiota in lung cancer, one of the world's deadliest cancers. However, the mechanisms by which the microbiota can impact this type of cancer and patient survival and response to treatments remain poorly investigated. In this review, the peculiarities of the gut and lung microbial ecosystems have been highlighted, and recent findings illustrating the possible mechanisms underlying the microbiota-lung cancer interaction and the host immune response have been discussed. In addition, the mucosal immune system has been identified as a crucial communication frame to ease interactive dynamics between the immune system and the microbiota. Finally, the use of specific next-generation intestinal probiotic strains in counteracting airway diseases has been evaluated. We believe that restoring homeostasis and the balance of bacterial microflora should become part of the routine of integrated cancer interventions, using probiotics, prebiotics, and postbiotics, and promoting a healthy diet and lifestyle.


Subject(s)
Gastrointestinal Microbiome , Lung Neoplasms , Microbiota , Probiotics , Humans , Lung Neoplasms/prevention & control , Microbiota/physiology , Prebiotics , Probiotics/therapeutic use
4.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34959725

ABSTRACT

The AHCC standardized extract of cultured Lentinula edodes mycelia, and the standardized extract of Asparagus officinalis stem, trademarked as ETAS, are well known supplements with immunomodulatory and anticancer potential. Several reports have described their therapeutic effects, including antioxidant and anticancer activity and improvement of immune response. In this study we aimed at investigating the effects of a combination of AHCC and ETAS on colorectal cancer cells and biopsies from healthy donors to assess the possible use in patients with colorectal cancer. Our results showed that the combination of AHCC and ETAS was synergistic in inducing a significant decrease in cancer cell growth, compared with single agents. Moreover, the combined treatment induced a significant increase in apoptosis, sparing colonocytes from healthy donors, and was able to induce a strong reduction in migration potential, accompanied by a significant modulation of proteins involved in invasiveness. Finally, combined treatment was able to significantly downregulate LGR5 and Notch1 in SW620 cancer stem cell (CSC) colonospheres. Overall, these findings support the potential therapeutic benefits of the AHCC and ETAS combinatorial treatment for patients with colorectal cancer.

5.
Integr Cancer Ther ; 18: 1534735419866908, 2019.
Article in English | MEDLINE | ID: mdl-31416372

ABSTRACT

The Standardized Cultured Extract of Lentinula edodes Mycelia (also known as Active Hexose Correlated Compound, AHCC) and Wasabia japonica (Wasabi) are natural nutritional supplements known for their immunomodulatory and anticancer potential. The aim of this study was to evaluate the combinatorial effect of the bioactive immunomodulatory compound (BAIC), obtained by combining Wasabi and AHCC, on human breast (MCF-7) and pancreatic (Panc02) adenocarcinoma cell lines. Data obtained revealed that BAIC determines a striking decline in cancer cell growth at minimal concentrations compared with the use of Wasabi and AHCC as single agents. A significant increase in the G0/G1 subpopulation together with a marked augmentation in the percentage of apoptotic cells was demonstrated by flow cytometry, together with a significant upregulation in the expression of genes associated to the apoptotic cascade in both cell lines. The inhibitory role BAIC plays in mammospheres formation from MCF-7-derived cancer stem cells was shown with a marked reduction in size and number. Interestingly, when BAIC was exposed to monocytic cells, no cytotoxic effects were observed. A monocytes-to-macrophages differentiation was rather observed with the concomitant acquisition of an anti-inflammatory phenotype. Taken together, our findings suggest that BAIC could be used as a potential integration of standard chemotherapy treatments because of the improved inhibitory activity on cancer cell proliferation and reduced potential adverse effects.


Subject(s)
Adenoma/drug therapy , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Immunologic Factors/pharmacology , Pancreatic Neoplasms/drug therapy , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Integrative Medicine/methods , MCF-7 Cells , Macrophages/drug effects , Medical Oncology/methods , Monocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL