Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Data ; 10(1): 810, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978200

ABSTRACT

Urban lakes provide multiple benefits to society while influencing life quality. Moreover, lakes and their microbiomes are sentinels of anthropogenic impact and can be used for natural resource management and planning. Here, we release original metagenomic data from several well-characterized and anthropogenically impacted eutrophic lakes in the vicinity of Stockholm (Sweden). Our goal was to collect representative microbial community samples and use shotgun sequencing to provide a broad view on microbial diversity of productive urban lakes. Our dataset has an emphasis on Lake Mälaren as a major drinking water reservoir under anthropogenic impact. This dataset includes short-read sequence data and metagenome assemblies from each of 17 samples collected from eutrophic lakes near the greater Stockholm area. We used genome-resolved metagenomics and obtained 2378 metagenome assembled genomes that de-replicated into 514 species representative genomes. This dataset adds new datapoints to previously sequenced lakes and it includes the first sequenced set of metagenomes from Lake Mälaren. Our dataset serves as a baseline for future monitoring of drinking water reservoirs and urban lakes.


Subject(s)
Lakes , Metagenome , Bacteria/genetics , Drinking Water , Metagenomics , Sweden
2.
Mol Ecol ; 32(23): 6686-6695, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35567341

ABSTRACT

The seafloor contains complex ecosystems where habitat heterogeneity influences biodiversity. Natural biological and geological features including vents, seeps and reefs create habitats that select for distinct populations of micro- and macrofauna. While largely studied for macrobiological diversity, built habitats may also select distinct microbiomes. Built habitat density on the seafloor is increasing with ocean sprawl expanding in the continental shelf and slope, potentially having widespread effects on benthic communities. This study addresses one type of built habitat, shipwrecks, on microbiomes in surrounding sediment. Using deep-sea sediment samples (762 total) from the Gulf of Mexico, we report elevated diversity and a predictable core microbiome around nine shipwrecks. We show the sphere of influence of built habitats extends up to 300 m onto the seafloor. Supervised learning made predictions of sample proximity to structures based on frequency of taxa. Strongest predictions occurred in sediments nearest and furthest from sites for archaea and mid-transect for bacteria. The response of archaea to built habitats was consistent across sites, while bacteria showed greater between site variability. The archaeal core shipwreck microbiome was enriched in taxa (e.g., Bathyarchaeia, Lokiarchaeia, Thermoplasmata) not present in the surrounding seafloor. Shipwrecks shaped microbiomes in expected ways, providing insight on how built habitats impact microbiome biodiversity in the Anthropocene.


Subject(s)
Ecosystem , Microbiota , Geologic Sediments/microbiology , Biodiversity , Archaea/genetics , Bacteria/genetics , Microbiota/genetics
3.
ISME J ; 15(10): 2883-2891, 2021 10.
Article in English | MEDLINE | ID: mdl-33888864

ABSTRACT

Biogeography of macro- and micro-organisms in the deep sea is, in part, shaped by naturally occurring heterogeneous habitat features of geological and biological origin such as seeps, vents, seamounts, whale and wood-falls. Artificial features including shipwrecks and energy infrastructure shape the biogeographic patterns of macro-organisms; how they influence microorganisms is unclear. Shipwrecks may function as islands of biodiversity for microbiomes, creating a patchwork of habitats with influence radiating out into the seabed. Here we show microbiome richness and diversity increase as a function of proximity to the historic deep-sea shipwreck Anona in the Gulf of Mexico. Diversity and richness extinction plots provide evidence of an island effect on microbiomes. A halo of core taxa on the seabed was observed up to 200 m away from the wreck indicative of the transition zone from shipwreck habitat to the surrounding environment. Transition zones around natural habitat features are often small in area compared to what was observed at Anona indicating shipwrecks may exert a large sphere of influence on seabed microbiomes. Historic shipwrecks are abundant, isolated habitats with global distribution, providing a means to explore contemporary processes shaping biogeography on the seafloor. This work is a case study for how built environments impact microbial biodiversity and provides new information on how arrival of material to the seafloor shapes benthic microbiomes.


Subject(s)
Ecosystem , Microbiota , Biodiversity , Gulf of Mexico
4.
Front Microbiol ; 11: 1541, 2020.
Article in English | MEDLINE | ID: mdl-32754132

ABSTRACT

Nitrification is an important biological link between oxidized and reduced forms of nitrogen (N). The efficiency of nitrification plays a key role in mitigating excess N in eutrophic systems, including those with cyanobacterial harmful algal blooms (cyanoHABs), since it can be closely coupled with denitrification and removal of excess N. Recent work suggests that competition for ammonium (NH4 +) between ammonia oxidizers and cyanoHABs can help determine microbial community structure. Nitrification rates and ammonia-oxidizing archaeal (AOA) and bacterial (AOB) community composition and gene abundances were quantified in Lake Okeechobee and St. Lucie Estuary in southern Florida (United States). We sampled during cyanobacterial (Microcystis) blooms in July 2016 and August 2017 (2 weeks before Hurricane Irma) and 10 days after Hurricane Irma made landfall. Nitrification rates were low during cyanobacterial blooms in Lake Okeechobee and St. Lucie Estuary, while low bloom conditions in St. Lucie Estuary coincided with greater nitrification rates. Nitrification rates in the lake were correlated (R 2 = 0.94; p = 0.006) with AOA amoA abundance. Following the hurricane, nitrification rates increased by an order of magnitude, suggesting that nitrifiers outcompeted cyanobacteria for NH4 + under turbid, poor light conditions. After Irma, AOA and AOB abundances increased in St. Lucie Estuary, while only AOB increased in Lake Okeechobee. AOA sequences clustered into three major lineages: Nitrosopumilales (NP), Nitrososphaerales (NS), and Nitrosotaleales (NT). Many of the lake OTUs placed within the uncultured and uncharacterized NS δ and NT ß clades, suggesting that these taxa are ecologically important along this eutrophic, lacustrine to estuarine continuum. After the hurricane, the AOA community shifted toward dominance by freshwater clades in St. Lucie Estuary and terrestrial genera in Lake Okeechobee, likely due to high rainfall and subsequent increased turbidity and freshwater loading from the lake into the estuary. AOB community structure was not affected by the disturbance. AOA communities were consistently more diverse than AOB, despite fewer sequences recovered, including new, unclassified, eutrophic ecotypes, suggesting a wider ecological biogeography than the oligotrophic niche originally posited. These results and other recent reports contradict the early hypothesis that AOB dominate ammonia oxidation in high-nutrient or terrestrial-influenced systems.

5.
Harmful Algae ; 81: 42-52, 2019 01.
Article in English | MEDLINE | ID: mdl-30638497

ABSTRACT

Sandusky Bay, Lake Erie, receives high nutrient loadings (nitrogen and phosphorus) from the Sandusky River, which drains an agricultural watershed. Eutrophication and cyanobacterial harmful algal blooms (cyanoHABs) persist throughout summer. Planktothrix agardhii is the dominant bloom-forming species and the main producer of microcystins in Sandusky Bay. Non-N2 fixing cyanobacteria, such as Planktothrix and Microcystis, thrive on chemically reduced forms of nitrogen, such as ammonium (NH4+) and urea. Ammonium regeneration and potential uptake rates and total microbial community demand for NH4+ were quantified in Sandusky Bay. Potential NH4+ uptake rates in the light increased from June to August at all stations. Dark uptake rates also increased seasonally and, by the end of August, were on par with light uptake rates. Regeneration rates followed a similar pattern and were significantly higher in August than June. Ammonium uptake kinetics during a Planktothrix-dominated bloom in Sandusky Bay and a Microcystis-dominated bloom in Maumee Bay were also compared. The highest half saturation constant (Km) in Sandusky Bay was measured in June and decreased throughout the season. In contrast, Km values in Maumee Bay were lowest at the beginning of summer and increased in October. A significant increase in Vmax in Sandusky Bay was observed between July and the end of August, reflective of intense competition for depleted NH4+. Metatranscriptome results from Sandusky Bay show a shift from cyanophycin synthetase (luxury NH4+ uptake; cphA1) expression in early summer to cyanophycinase (intracellular N mobilization; cphB/cphA2) expression in August, supporting the interpretation that the microbial community is nitrogen-starved in late summer. Combined, our results show that, in late summer, when nitrogen concentrations are low, cyanoHABs in Sandusky Bay rely on regenerated NH4+ to support growth and toxin production. Increased dark NH4+ uptake late in summer suggests an important heterotrophic contribution to NH4+ depletion in the phycosphere. Kinetic experiments in the two bays suggest a competitive advantage for Planktothrix over Microcystis in Sandusky Bay due to its higher affinity for NH4+ at low concentrations.


Subject(s)
Ammonium Compounds , Cyanobacteria , Bays , Isotopes , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL