Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38511331

ABSTRACT

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Subject(s)
Disease Models, Animal , Embryonic Development , Gene Expression Regulation, Developmental , Neurogenesis , Animals , Neurogenesis/genetics , Embryonic Development/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Skull/embryology , Skull/pathology , Mice , Cleft Palate/genetics , Cleft Palate/pathology , Cleft Palate/embryology , Cleft Lip/genetics , Cleft Lip/pathology , Cleft Lip/embryology , Trigeminal Nerve/embryology , Embryo, Mammalian/metabolism , Face/embryology , Face/abnormalities , Phenotype , Intellectual Disability/genetics , Mutation/genetics , Doublecortin Protein
2.
Fluids Barriers CNS ; 21(1): 9, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268040

ABSTRACT

The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.


Subject(s)
Cerebral Ventricles , Choroid Plexus , Animals , Mice , Choroid Plexus/diagnostic imaging , X-Ray Microtomography , Rhombencephalon/diagnostic imaging , Brain
SELECTION OF CITATIONS
SEARCH DETAIL