Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Anim Genet ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136303

ABSTRACT

Piglet birth weight is associated with preweaning survival, and its related traits have been included in the breeding program. Thus, understanding its genetic basis is essential. This study identified four birth weight-associated genomic regions on chromosomes 2, 4, 5, and 7 through genome-wide association study analysis in 7286 pigs from three different pure breeds using the FarmCPU model. The genetic and phenotypic variance explained by the four candidate regions is 8.42% and 1.85%, respectively. Twenty-eight candidate genes were detected, of which APPL2, TGFBI, MACROH2A1, and SEC22B have been reported to affect body growth or development. In addition, 21 H3K4me3-enriched peaks overlapped with the birth weight-associated genomic regions were identified by integrating the genome-wide association study results with our previous ChIP-seq and RNA-seq data generated in the pig placenta, a fetal organ relevant to birth weight, and three of the regulatory regions influence TGFBI, MACROH2A1, and SEC22B expression. This study provides new insights into understanding the mechanisms for birth weight. Further investigating the variants in the regulatory regions would help identify the functional variants for birth weight in pigs.

2.
Malays J Med Sci ; 31(3): 125-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38984250

ABSTRACT

Background: Supine percutaneous nephrolithotomy (s-PCNL) offers great benefits from urological and anaesthetic points of view. We present the first evaluation of the outcomes of s-PCNL in Malaysia. Our aim was to explore the safety and efficacy of s-PCNL. Methods: Institutional review board approval was obtained from the National Medical Research Register (NMRR ID-21002225-WLP). We retrospectively reviewed 115 patients with renal pelvis stones who underwent single renal access during s-PCNL between November 2020 and May 2023. Patients who underwent simultaneous ipsilateral or contralateral endourological procedures were included. The data were analysed to determine stone-free rates (SFR), major complication rates, blood transfusion rates, operative times and lengths of hospital stay (LOS). Results: The SFR was higher for the single middle calyceal renal access (MCA) group than for the lower calyceal renal access (LCA) or upper calyceal renal access (UCA) groups (OR: 1.76; 95% confidence interval [CI]: 0.63, 4.92). In total, 0, 1 and 2 patients had major complications in the UCA, MCA and LCA groups, respectively (P = 0.453). One of the 115 patients (0.9%) needed blood transfusion. Subgroup analysis revealed mean operative times of 76.3 min and 78.6 min for patients who underwent sole s-PCNL (PCNL-only group) and those who had simultaneous ipsilateral and contralateral endourological procedures (PCNL-plus group), respectively (P = 0.786). The overall mean LOS was 2.9 days. Conclusion: s-PCNL is a safe and effective alternative treatment for renal stones. We would recommend s-PCNL for patients who require an ipsilateral/contralateral endourological procedure (URS/RIRS) because it is time-efficient. All renal accesses are safe. Single MCA is recommended for complete stone clearance.

3.
Nutr Metab (Lond) ; 21(1): 48, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997737

ABSTRACT

BACKGROUND: Previous studies have reported a close association between the Geriatric Nutritional Risk Index (GNRI) and various conditions. However, the association between the GNRI and mortality remains unclear. To examine the correlation between the GNRI and all-cause, cancer-specific, and cardiovascular mortality, this study was performed. METHODS: We analyzed elderly participants in the National Health and Nutrition Examination Survey from 2005 to 2016. The GNRI was calculated using body mass index and serum albumin. Kaplan-Meier survival curves were drawn to compare the survival probability between the normal and decreased GNRI groups. Weighted multivariate Cox regression and restricted cubic spline (RCS) models were employed to determine the linear and non-linear associations of the GNRI with all-cause, cancer-specific, and cardiovascular mortality. RESULTS: A total of 3,276 participants were included in the analysis. The Kaplan-Meier survival curve showed that the decreased GNRI group had a lower survival probability for all-cause mortality and cancer-specific mortality (P < 0.001) but not for cardiovascular mortality (P > 0.05). In the full regression models, the decreased group had a higher risk of all-cause mortality (HR = 1.67, 95% CI = 1.21-2.30, P = 0.002), and cancer-specific mortality (HR = 2.20, 95% CI = 1.32-3.67, P = 0.003) than the normal group. For cardiovascular mortality, no significant association with GNRI (HR = 1.39, 95% CI = 0.60-3.22, P = 0.436) was detected. Notably, the RCS analysis identified a linear downward trend between the GNRI and all-cause, alongside cancer-specific mortalities (all P for overall < 0.05). The time-dependent Receiver Operating Characteristic (ROC) analysis unveiled the predictive power of the GNRI for 5-year all-cause mortality, cancer mortality, and cardiovascular mortality was 0.754, 0.757, and 0.836, respectively, after adjusting for covariates. CONCLUSIONS: Individuals with a decreased GNRI had increased risks of all-cause, and cancer-specific mortality. There were linear associations of the GNRI with all-cause, and cancer-specific mortality. Nutritional status should be carefully monitored, which may improve the overall prognosis for the general population.

4.
Med Image Anal ; 97: 103249, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38963972

ABSTRACT

Image registration is an essential step in many medical image analysis tasks. Traditional methods for image registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity between two images. Recent learning-based methods, trained to directly predict transformations between two images, run much faster, but suffer from performance deficiencies due to domain shift. Here we present a new neural network based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural networks to model deformations between image pairs. NIR represents the transformation between two images with a continuous function implemented via neural fields, receiving a 3D coordinate as input and outputting the corresponding deformation vector. NIR provides two ways of generating deformation field: directly output a displacement vector field for general deformable registration, or output a velocity vector field and integrate the velocity field to derive the deformation field for diffeomorphic image registration. The optimal registration is discovered by updating the parameters of the neural field via stochastic mini-batch gradient descent. We describe several design choices that facilitate model optimization, including coordinate encoding, sinusoidal activation, coordinate sampling, and intensity sampling. NIR is evaluated on two 3D MR brain scan datasets, demonstrating highly competitive performance in terms of both registration accuracy and regularity. Compared to traditional optimization-based methods, our approach achieves better results in shorter computation times. In addition, our methods exhibit performance on a cross-dataset registration task, compared to the pre-trained learning-based methods.

5.
Sci Adv ; 10(24): eado4791, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865465

ABSTRACT

The stemness loss-associated dysregeneration of impaired alveolar type 2 epithelial (AT2) cells abolishes the reversible therapy of idiopathic pulmonary fibrosis (IPF). We here report an inhalable mucus-penetrating lipid nanoparticle (LNP) for codelivering dual mRNAs, promoting realveolarization via restoring AT2 stemness for IPF treatment. Inhalable LNPs were first formulated with dipalmitoylphosphatidylcholine and our in-house-made ionizable lipids for high-efficiency pulmonary mucus penetration and codelivery of dual messenger RNAs (mRNAs), encoding cytochrome b5 reductase 3 and bone morphogenetic protein 4, respectively. After being inhaled in a bleomycin model, LNPs reverses the mitochondrial dysfunction through ameliorating nicotinamide adenine dinucleotide biosynthesis, which inhibits the accelerated senescence of AT2 cells. Concurrently, pathological epithelial remodeling and fibroblast activation induced by impaired AT2 cells are terminated, ultimately prompting alveolar regeneration. Our data demonstrated that the mRNA-LNP system exhibited high protein expression in lung epithelial cells, which markedly extricated the alveolar collapse and prolonged the survival of fibrosis mice, providing a clinically viable strategy against IPF.


Subject(s)
Bleomycin , Mucus , Nanoparticles , Animals , Nanoparticles/chemistry , Mice , Mucus/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Disease Models, Animal , Administration, Inhalation , Lipids/chemistry , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Liposomes
6.
Phys Chem Chem Phys ; 26(26): 18030-18040, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38894700

ABSTRACT

The advancement of anode materials for achieving high energy storage is a crucial topic for high-performance Li-ion batteries (LIBs). Here, first-principles calculations were used to conduct a thorough and systematic investigation into lithium storage properties of MXenes with new S functional groups as LIB anode materials. Density of states, diffusion energy barriers, open circuit voltages and storage capacities were calculated to comprehensively evaluate the lithium storage properties of S-functionalized MXenes. Based on the computational results, Ti2CS2 and V2CS2 were selected as excellent candidates from ten M2CS2 MXenes. The diffusion energy barriers of M2CS2 within the range of 0.26-0.32 eV are lower than those of M2CO2 and M2CF2, indicating that M2CS2 anodes exhibit faster charge/discharge rates. By examining the stable crystal structures and comparing atomic positions before and after Li adsorptions, structural phase transitions during Li-ion adsorptions could happen for nearly all M2CS2 MXenes. The phase transitions predicted were directly observed using ab initio molecular dynamic simulations. The cycle stability, storage capacity and other lithium storage properties were enhanced by the reversible structural phase transition.

7.
J Gastrointest Surg ; 28(8): 1223-1228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705366

ABSTRACT

BACKGROUND: This study presented an innovative technique in totally laparoscopic total gastrectomy (TLTG) for overlap esophagojejunostomy (E-J), termed self-pulling and latter transection (SPLT) (overlap SPLT). It evaluated the effectiveness and short-term outcomes of this novel method through a comparative analysis with the established functional end-to-end (FETE) E-J incorporating SPLT. METHODS: From September 2018 to September 2023, this study enrolled 68 patients with gastric cancer who underwent TLTG with overlap SPLT anastomosis and 120 patients who underwent TLTG with FETE SPLT anastomosis. Clinicopathologic characteristics and surgical and postoperative outcomes data for overlap SPLT cases were gathered and retrospectively compared with those from FETE SPLT TLTG to evaluate the effectiveness and clinical safety. RESULTS: The duration of anastomosis for overlap SPLT was 25.3 ± 7.4 minutes, significantly longer than that for the FETE SPLT (18.1 ± 4.0 minutes, P = .031). Perioperatively, 1 anastomosis-related complication occurred in each group, but this did not constitute a statistically significant difference (P = .682). No statistically significant differences were found between the 2 groups in terms of operative time, postoperative hospital stay, operative cost, surgical margins, or number of lymph nodes removed. Postoperative morbidity rates were similar between the groups (4.4% vs 5.8%, P = .676). CONCLUSION: The overlap SPLT technique is regarded as a safe and feasible method for anastomosis. There were no apparent differences in complications between overlap SPLT and FETE SPLT, but overlap SPLT costed 1 additional stapler cartridge and required a longer duration.


Subject(s)
Anastomosis, Surgical , Feasibility Studies , Gastrectomy , Laparoscopy , Operative Time , Stomach Neoplasms , Humans , Gastrectomy/methods , Gastrectomy/adverse effects , Female , Laparoscopy/methods , Laparoscopy/adverse effects , Male , Middle Aged , Stomach Neoplasms/surgery , Retrospective Studies , Aged , Anastomosis, Surgical/methods , Anastomosis, Surgical/adverse effects , Esophagus/surgery , Jejunum/surgery , Treatment Outcome , Postoperative Complications/epidemiology , Postoperative Complications/etiology
8.
EClinicalMedicine ; 72: 102617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707910

ABSTRACT

Background: Bone metastasis significantly impact the prognosis of non-small cell lung cancer (NSCLC) patients, reducing their quality of life and shortening their survival. Currently, there are no effective tools for the diagnosis and risk assessment of early bone metastasis in NSCLC patients. This study employed machine learning to analyze serum indicators that are closely associated with bone metastasis, aiming to construct a model for the timely detection and prognostic evaluation of bone metastasis in NSCLC patients. Methods: The derivation cohort consisted of 664 individuals with stage IV NSCLC, diagnosed between 2015 and 2018. The variables considered in this study included age, sex, and 18 specific serum indicators that have been linked to the occurrence of bone metastasis in NSCLC. Variable selection used multivariate logistic regression analysis and Lasso regression analysis. Six machine learning methods were utilized to develop a bone metastasis diagnostic model, assessed with Area Under the Curve (AUC), Decision Curve Analysis (DCA), sensitivity, specificity, and validation cohorts. External validation used 113 NSCLC patients from the Medical Alliance (2019-2020). Furthermore, a prospective validation study was conducted on a cohort of 316 patients (2019-2020) who were devoid of bone metastasis, and followed-up for at least two years to assess the predictive capabilities of this model. The model's prognostic value was evaluated using Kaplan-Meier survival curves. Findings: Through variable selection, 11 serum indictors were identified as independent predictive factors for NSCLC bone metastasis. Six machine learning models were developed using age, sex, and these serum indicators. A random forest (RF) model demonstrated strong performance during the training and internal validation cohorts, achieving an AUC of 0.98 (95% CI 0.95-0.99) for internal validation. External validation further confirmed the RF model's effectiveness, yielding an AUC of 0.97 (95% CI 0.94-0.99). The calibration curves demonstrated a high level of concordance between the anticipated risk and the observed risk of the RF model. Prospective validation revealed that the RF model could predict the occurrence of bone metastasis approximately 10.27 ± 3.58 months in advance, according to the results of the SPECT. An online computing platform (https://bonemetastasis.shinyapps.io/shiny_cls_1model/) for this RF model is publicly available and free-to-use by doctors and patients. Interpretation: This study innovatively employs age, gender, and 11 serological markers closely related to the mechanism of bone metastasis to construct an RF model, providing a reliable tool for the early screening and prognostic assessment of bone metastasis in NSCLC patients. However, as an exploratory study, the findings require further validation through large-scale, multicenter prospective studies. Funding: This work is supported by the National Natural Science Foundation of China (NO.81974315); Shanghai Municipal Science and Technology Commission Medical Innovation Research Project (NO.20Y11903300); Shanghai Municipal Health Commission Health Industry Clinical Research Youth Program (NO.20204Y034).

9.
Nano Lett ; 24(18): 5467-5473, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38647318

ABSTRACT

The discovery of room-temperature ferromagnetism in van der Waals (vdW) materials opens new avenues for exploring low-dimensional magnetism and its applications in spintronics. Recently, the observation of the room-temperature topological Hall effect in the vdW ferromagnet Fe3GaTe2 suggests the possible existence of room-temperature skyrmions, yet skyrmions have not been directly observed. In this study, real-space imaging was employed to investigate the domain evolution of the labyrinth and skyrmion structure. First, Néel-type skyrmions can be created at room temperature. In addition, the influence of flake thickness and external magnetic field (during field cooling) on both labyrinth domains and the skyrmion lattice is unveiled. Due to the competition between magnetic anisotropy and dipole interactions, the specimen thickness significantly influences the density of skyrmions. These findings demonstrate that Fe3GaTe2 can host room-temperature skyrmions of various sizes, opening up avenues for further study of magnetic topological textures at room temperature.

10.
Chin Med J (Engl) ; 137(8): 936-948, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38527931

ABSTRACT

ABSTRACT: Diabetic cardiomyopathy is defined as abnormal structure and function of the heart in the setting of diabetes, which could eventually develop heart failure and leads to the death of the patients. Although blood glucose control and medications to heart failure show beneficial effects on this disease, there is currently no specific treatment for diabetic cardiomyopathy. Over the past few decades, the pathophysiology of diabetic cardiomyopathy has been extensively studied, and an increasing number of studies pinpoint that impaired mitochondrial energy metabolism is a key mediator as well as a therapeutic target. In this review, we summarize the latest research in the field of diabetic cardiomyopathy, focusing on mitochondrial damage and adaptation, altered energy substrates, and potential therapeutic targets. A better understanding of the mitochondrial energy metabolism in diabetic cardiomyopathy may help to gain more mechanistic insights and generate more precise mitochondria-oriented therapies to treat this disease.


Subject(s)
Diabetic Cardiomyopathies , Energy Metabolism , Mitochondria , Humans , Diabetic Cardiomyopathies/metabolism , Energy Metabolism/physiology , Mitochondria/metabolism , Animals
11.
J Agric Food Chem ; 72(10): 5258-5268, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38430124

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum, is a predominant disease of wheat. Due to the lack of disease-resistant germplasm, chemical control is an important means to control wheat scab. Volatile substances produced in near-isogenic wheat lines were detected after inoculation with F. graminearum, and 4-propylphenol, which appears in FHB-resistant lines, was identified. In vitro and in vivo antifungal activity tests demonstrate that 4-propylphenol effectively inhibits the mycelial growth of F. graminearum. Metabolomics analysis showed changes in glutathione metabolism, indicating that 4-propylphenol triggered reactive oxygen species (ROS) stress. This was consistent with the increasing ROS levels in Fusarium cells treated with 4-propylphenol. Further results demonstrated that excessive accumulation of ROS induced DNA and cell membrane damage in the mycelium. Moreover, 4-propylphenol showed different degrees of inhibition against other soil-borne pathogens (fungi and oomycetes). These findings illustrated that 4-propylphenol has broad spectrum and high antifungal activity and should be considered for use as an ecological fungicide.


Subject(s)
Antifungal Agents , Fusarium , Phenols , Antifungal Agents/pharmacology , Triticum/metabolism , Reactive Oxygen Species/metabolism , Plant Diseases/microbiology
12.
Anim Biosci ; 37(7): 1196-1203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38419532

ABSTRACT

OBJECTIVE: A study was conducted to quantify the performance differences of the nearinfrared spectroscopy (NIRS) calibration models developed with different degrees of hay sample preparations. METHODS: A total of 227 imported alfalfa (Medicago sativa L.) and another 360 imported timothy (Phleum pratense L.) hay samples were used to develop calibration models for nutrient value parameters such as moisture, neutral detergent fiber, acid detergent fiber, crude protein, and in vitro dry matter digestibility. Spectral data of hay samples prepared by milling into 1-mm particle size or unground were separately regressed against the wet chemistry results of the abovementioned parameters. RESULTS: The performance of the developed NIRS calibration models was evaluated based on R2, standard error, and ratio percentage deviation (RPD). The models developed with ground hay were more robust and accurate than those with unground hay based on calibration model performance indexes such as R2 (coefficient of determination), standard error, and RPD. Although the R2 of calibration models was mainly greater than 0.90 across the feed value indexes, the R2 of cross-validations was much lower. The R2 of cross-validation varies depending on feed value indexes, which ranged from 0.61 to 0.81 in alfalfa, and from 0.62 to 0.95 in timothy. Estimation of feed values in imported hay can be achievable by the calibrated NIRS. However, the NIRS calibration models must be improved by including a broader range of imported hay samples in the modeling. CONCLUSION: Although the analysis accuracy of NIRS was substantially higher when calibration models were developed with ground samples, less sample preparation will be more advantageous for achieving rapid delivery of hay sample analysis results. Therefore, further research warrants investigating the level of sample preparations compromising analysis accuracy by NIRS.

13.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346942

ABSTRACT

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Subject(s)
Bone Resorption , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Mice, Knockout , Bone Resorption/genetics , Receptors, Kisspeptin-1
14.
J Craniofac Surg ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345941

ABSTRACT

Infantile hemangiomas (IHs) are the most common benign soft tissue tumors of infancy. Oral propranolol has become a first-line treatment option since the unexpected discovery of its surprising efficacy in the treatment of IHs in 2008. However, oral propranolol causes systemic complications, including hypotension, bradycardia, and hypoglycemia. To minimize systemic adverse effects of oral propranolol, timolol maleate, a nonselective ß-blocker similar to propranolol, has been used as a topical agent to treat superficial IHs. The authors evaluated the efficacy and safety of oral propranolol or topical timolol in 60 patients with IHs. Of the 60 patients recruited, 30 patients were treated using orally administrated propranolol and an additional 30 patients received topical timolol. The efficacy rate of the oral propranolol and topical timolol was 96.7% and 93.3%, respectively. There were no significant differences between the two treatment patterns for the efficacy rate. The incidence of systemic adverse effects for patients treated with oral propranolol was significantly higher than that for cases received topically timolol treatment. Topical timolol maleate is effective and well-tolerated in the treatment of IHs. It could be considered as the first-line treatment choice, especially for superficial IHs.

15.
Plant Cell Environ ; 47(5): 1797-1812, 2024 May.
Article in English | MEDLINE | ID: mdl-38314665

ABSTRACT

As the most abundant form of methylation modification in messenger RNA (mRNA), the distribution of N6-methyladenosine (m6A) has been preliminarily revealed in herbaceous plants under salt stress, but its function and mechanism in woody plants were still unknown. Here, we showed that global m6A levels increased during poplar response to salt stress. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that m6A significantly enriched in the coding sequence region and 3'-untranslated regions in poplar, by recognising the conserved motifs, AGACU, GGACA and UGUAG. A large number of differential m6A transcripts have been identified, and some have been proved involving in salt response and plant growth and development. Further combined analysis of MeRIP-seq and RNA-seq revealed that the m6A hypermethylated and enrich in the CDS region preferred to positively regulate expression abundance. Writer inhibitor, 3-deazaneplanocin A treatment increased the sensitivity of poplar to salt stress by reducing mRNA stability to regulate the expression of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Furthermore, we verified that the methyltransferase PagFIP37 plays a positively role in the response of poplar to salt stress, overexpressed lines have stronger salt tolerance, while RNAi lines were more sensitive to salt, which relied on regulating mRNA stability in an m6A manner of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Collectively, these results revealed the regulatory role of m6A methylation in poplar response to salt stress, and revealed the importance and mechanism of m6A methylation in the response of woody plants to salt stress for the first time.


Subject(s)
Adenosine/analogs & derivatives , Populus , RNA Methylation , Salt Stress/genetics , Methyltransferases/genetics , Populus/genetics , RNA, Messenger/genetics
16.
bioRxiv ; 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38260351

ABSTRACT

Single cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model's attributes, reconstructs cellular lineage pathways, shedding light on the cell's evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.

17.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38207332

ABSTRACT

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Subject(s)
Liposomes , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Receptors, Chimeric Antigen , Sepsis , Staphylococcal Infections , Animals , Mice , Receptors, Chimeric Antigen/therapeutic use , Staphylococcal Infections/drug therapy , RNA, Messenger , Anti-Bacterial Agents/pharmacology , Macrophages , Sepsis/drug therapy , Lipids/pharmacology
19.
Inflammation ; 47(3): 975-988, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38159178

ABSTRACT

This study mainly explored the role of nicorandil in regulating ferroptosis and alleviating septic cardiomyopathy through toll-like receptor (TLR) 4/solute carrier family 7 member 11 (SLC7A11) signaling pathway. Twenty-four male SD rats were randomly divided into control, Nic (nicorandil), LPS (lipopolysaccharide), and LPS + Nic groups and given echocardiography. A detection kit was applied to measure the levels of lactic dehydrogenase (LDH), cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB); HE staining and the levels of glutathione (GSH), malondialdehyde (MDA), total iron, and Fe2+ of myocardial tissues were detected. Moreover, the expression of TLR4 and SLC7A11 were measured by qRT-PCR and the proteins regulating ferroptosis (TLR4, SLC7A11, GPX4, ACSL4, DMT1, Fpn, and TfR1) were checked by western blot. Myocardial cells (H9C2) were induced with lipopolysaccharide (LPS) and transfected with si-TLR4 or SLC7A11-OE. Then, the viability, ferroptosis, and TLR4/SLC7A11 signaling pathway of cells were examined. Nicorandil could significantly increase left ventricular (LV) ejection fraction (LVEF) while reduce LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV). Also, it greatly reduced the levels of LDH, cTnI, and CK-MB; alleviated the pathological changes of myocardial injury; notably decreased MDA, total iron, and Fe2+ levels in myocardial tissues; and significantly increased GSH level. Besides, nicorandil obviously raised protein levels of GPX4, Fpn, and SLC7A11, and decreased protein levels of ACSL4, DMT1, TfR1, and TLR4. After knockdown of TLR4 or overexpression of SLC7A11, the inhibition effect of nicorandil on ferroptosis was strengthened in LPS-induced H9C2 cells. Therefore, nicorandil may regulate ferroptosis through TLR4/SLC7A11 signaling, thereby alleviating septic cardiomyopathy.


Subject(s)
Cardiomyopathies , Ferroptosis , Nicorandil , Rats, Sprague-Dawley , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Ferroptosis/drug effects , Animals , Toll-Like Receptor 4/metabolism , Nicorandil/pharmacology , Nicorandil/therapeutic use , Male , Signal Transduction/drug effects , Rats , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Amino Acid Transport System y+/metabolism , Cell Line , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Lipopolysaccharides/toxicity
20.
Diabetes Obes Metab ; 26(1): 85-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37743825

ABSTRACT

AIMS: To analyse spatial and temporal changes in the global burden of diabetes mellitus (DM) attributable to dietary factors from 1990 to 2019. MATERIALS AND METHODS: The burden of DM was analysed in terms of age-standardized disability-adjusted life-year (DALY) rates and age-standardized death rates (ASDRs), which were obtained from the Global Burden of Disease Study 2019, and their corresponding estimated annual percentage changes (EAPCs). RESULTS: The ASDR exhibited a decreasing trend (EAPC = -0.02), while the age-standardized DALY rate exhibited an increasing trend (EAPC = 0.65). Forty-four percent of the burden of DM was attributable to dietary factors, with the three largest contributors being high intake of red meat, high intake of processed meat, and low intake of fruit. Residence in a region with a high sociodemographic index (SDI) was associated with a diet low in whole grains and high in red meat and processed meat, while residence in a low-SDI region was associated with a diet low in whole grains and fruits, and high in red meat. CONCLUSIONS: The age-standardized DALYs of DM attributable to dietary factors increased between 1990 and 2019 but differed among areas. The three largest dietary contributors to the burden of DM were high intake of red meat, high intake of processed meat, and low intake of fruit.


Subject(s)
Diabetes Mellitus , Global Burden of Disease , Humans , Diabetes Mellitus/epidemiology , Meat/adverse effects , Fruit , Quality-Adjusted Life Years
SELECTION OF CITATIONS
SEARCH DETAIL