Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Nat Med ; 30(2): 560-572, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291301

ABSTRACT

Nutrition has broad impacts on all physiological processes. However, how nutrition affects human immunity remains largely unknown. Here we explored the impact of a dietary intervention on both immunity and the microbiota by performing a post hoc analysis of a clinical trial in which each of the 20 participants sequentially consumed vegan or ketogenic diets for 2 weeks ( NCT03878108 ). Using a multiomics approach including multidimensional flow cytometry, transcriptomic, proteomic, metabolomic and metagenomic datasets, we assessed the impact of each diet, and dietary switch, on host immunity and the microbiota. Our data revealed that overall, a ketogenic diet was associated with a significant upregulation of pathways and enrichment in cells associated with the adaptive immune system. In contrast, a vegan diet had a significant impact on the innate immune system, including upregulation of pathways associated with antiviral immunity. Both diets significantly and differentially impacted the microbiome and host-associated amino acid metabolism, with a strong downregulation of most microbial pathways following ketogenic diet compared with baseline and vegan diet. Despite the diversity of participants, we also observed a tightly connected network between datasets driven by compounds associated with amino acids, lipids and the immune system. Collectively, this work demonstrates that in diverse participants 2 weeks of controlled dietary intervention is sufficient to significantly and divergently impact host immunity, which could have implications for precision nutritional interventions. ClinicalTrials.gov registration: NCT03878108 .


Subject(s)
Diet, Ketogenic , Diet, Vegan , Humans , Proteomics , Clinical Trials as Topic
3.
Elife ; 122023 01 17.
Article in English | MEDLINE | ID: mdl-36648132

ABSTRACT

Background: Both sex and prior exposure to pathogens are known to influence responses to immune challenges, but their combined effects are not well established in humans, particularly in early innate responses critical for shaping subsequent outcomes. Methods: We employed systems immunology approaches to study responses to a replication-defective, herpes simplex virus (HSV) 2 vaccine in men and women either naive or previously exposed to HSV. Results: Blood transcriptomic and cell population profiling showed substantial changes on day 1 after vaccination, but the responses depended on sex and whether the vaccinee was naive or previously exposed to HSV. The magnitude of early transcriptional responses was greatest in HSV naive women where type I interferon (IFN) signatures were prominent and associated negatively with vaccine-induced neutralizing antibody titers, suggesting that a strong early antiviral response reduced the uptake of this replication-defective virus vaccine. While HSV seronegative vaccine recipients had upregulation of gene sets in type I IFN (IFN-α/ß) responses, HSV2 seropositive vaccine recipients tended to have responses focused more on type II IFN (IFN-γ) genes. Conclusions: These results together show that prior exposure and sex interact to shape early innate responses that then impact subsequent adaptive immune phenotypes. Funding: Intramural Research Program of the NIH, the National Institute of Allergy and Infectious Diseases, and other institutes supporting the Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation. The vaccine trial was supported through a clinical trial agreement between the National Institute of Allergy and Infectious Diseases and Sanofi Pasteur. Clinical trial number: NCT01915212.


Subject(s)
Herpesvirus Vaccines , Immunity, Innate , Sex Factors , Female , Humans , Male , Antibodies, Neutralizing , Herpesvirus 2, Human , Herpesvirus Vaccines/immunology , Vaccines, Attenuated , Herpes Simplex/prevention & control
4.
Nature ; 614(7949): 752-761, 2023 02.
Article in English | MEDLINE | ID: mdl-36599369

ABSTRACT

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Subject(s)
COVID-19 , Immunity, Innate , Immunologic Memory , Influenza Vaccines , Sex Characteristics , T-Lymphocytes , Vaccination , Female , Humans , Male , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Interleukin-15/immunology , Toll-Like Receptors/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Monocytes , Immunity, Innate/genetics , Immunity, Innate/immunology , Single-Cell Analysis , Healthy Volunteers
5.
Ann Rheum Dis ; 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35914929

ABSTRACT

OBJECTIVES: Premature cardiovascular events in systemic lupus erythematosus (SLE) contribute to morbidity and mortality, with no effective preventive strategies described to date. Immune dysregulation and metabolic disturbances appear to play prominent roles in the induction of vascular disease in SLE. The peroxisome proliferator activated receptor-gamma agonist pioglitazone (PGZ suppresses vascular damage and immune dysregulation in murine lupus and improves endothelial dysfunction in other inflammatory diseases. We hypothesised that PGZ could improve vascular dysfunction and cardiometabolic parameters in SLE. METHODS: Eighty SLE subjects with mild to severe disease activity were randomised to a sequence of PGZ followed by placebo for 3 months, or vice versa, in a double-blind, cross-over design with a 2-month wash-out period. Primary endpoints were parameters of endothelial function and arterial inflammation, measured by multimodal assessments. Additional outcome measures of disease activity, neutrophil dysregulation, metabolic disturbances and gene expression studies were performed. RESULTS: Seventy-two subjects completed the study. PGZ was associated with a significant reduction in Cardio-Ankle Vascular Index (a measure of arterial stiffness) compared with placebo. Various metabolic parameters improved with PGZ, including insulin resistance and lipoprotein profiles. Circulating neutrophil extracellular trap levels also significantly decreased with PGZ compared with placebo. Most adverse events experienced while on PGZ were mild and resolved with reduction in PGZ dose. CONCLUSION: PGZ was well tolerated and induced significant improvement in vascular stiffness and cardiometabolic parameters in SLE. The results suggest that PGZ should be further explored as a modulator of cardiovascular disease risk in SLE. TRIAL REGISTRATION NUMBER: NCT02338999.

6.
medRxiv ; 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35233581

ABSTRACT

Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants. Here we use systems immunology, including longitudinal multimodal single cell analysis (surface proteins, transcriptome, and V(D)J sequences) from 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19 and 40 age- and sex-matched healthy controls with no history of COVID-19 to comparatively assess the post-infection immune status (mean: 151 days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination. Identification of both sex-specific and -independent temporally stable changes, including signatures of T-cell activation and repression of innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes, suggest that mild COVID-19 can establish new post-recovery immunological set-points. COVID-19-recovered males had higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males and COVID-19-recovered females, partly attributable to elevated pre-vaccination frequencies of a GPR56 expressing CD8+ T-cell subset in male recoverees that are "poised" to produce higher levels of IFNγ upon inflammatory stimulation. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of the repressed genes in monocytes increased and moved towards the pre-vaccination baseline of healthy controls, suggesting that the acute inflammation induced by vaccination could partly reset the immune states established by mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19, and possibly respiratory viral infections in general, could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.

7.
Cell ; 184(7): 1836-1857.e22, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33713619

ABSTRACT

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Gene Expression/immunology , Killer Cells, Natural/metabolism , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19/mortality , Case-Control Studies , Dendritic Cells/cytology , Female , Humans , Killer Cells, Natural/cytology , Longitudinal Studies , Male , Middle Aged , Transcriptome/immunology , Young Adult
8.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32163376

ABSTRACT

Changes in maternal immunity during pregnancy can result in an altered immune state, and as a natural perturbation, this provides an opportunity to understand functional interactions of the immune system in vivo. We report characterization of maternal peripheral immune phenotypes for 33 longitudinally sampled normal pregnancies, using clinical measurements of complete blood counts and major immune cell populations, as well as high parameter flow cytometry for 30 leukocyte antigens characterizing 79 cell populations, and monitoring of 1305 serum proteins using the SomaLogic platform. Cellular analyses characterized transient changes in T cell polarization and more persistent alterations in T and B cell subset frequencies and activation. Serum proteomic analysis identified a potentially novel set of 7 proteins that are predictive of gestational age: DDR1, PLAU, MRC1, ACP5, ROBO2, IGF2R, and GNS. We further show that gestational age can be predicted from the parameters obtained by complete blood count tests and clinical flow cytometry characterizing 5 major immune cell populations. Inferring gestational age from this routine clinical phenotyping data could be useful in resource-limited settings that lack obstetric ultrasound. Overall, both the cellular and proteomic analyses validate previously reported phenotypic immunological changes of pregnancy and uncover potentially new alterations and predictive markers.


Subject(s)
Gestational Age , Leukocytes/immunology , Pregnancy Trimester, First/immunology , Pregnancy/immunology , Adolescent , Adult , Biomarkers/blood , Female , Humans , Immunophenotyping , Leukocytes/metabolism , Middle Aged , Pregnancy/blood , Pregnancy Trimester, First/blood
9.
Article in English | WPRIM (Western Pacific) | ID: wpr-727869

ABSTRACT

Itching is a common clinical symptom of skin disease that significantly affects a patient's quality of life. Transient receptor potential vanilloid 1 (TRPV1) receptors of keratinocytes and peripheral nerve fibers in skin are involved in the regulation of itching as well as pain. In this study, we investigated whether curcumin, which acts on TRPV1 receptors, affects histamine-induced itching in mice, using behavioral tests and electrophysiological approaches. We found that histamine-induced itching was blocked by topical application of curcumin in a concentration-dependent manner. In ex-vivo recordings, histamine-induced discharges of peripheral nerves were reduced by the application of curcumin, indicating that curcumin acts directly on peripheral nerves. Additionally, curcumin blocked the histamine-induced inward current via activation of TRPV1 (curcumin IC₅₀=523 nM). However, it did not alter chloroquine-induced itching behavior in mice, which is associated with transient receptor potential ankyrin 1 (TRPA1). Taken together, our results suggest that histamine-induced itching can be blocked by topical application of curcumin through the inhibitory action of curcumin on TRPV1 receptors in peripheral nerves.


Subject(s)
Animals , Mice , Ankyrins , Behavior Rating Scale , Curcumin , Histamine , Keratinocytes , Peripheral Nerves , Pruritus , Quality of Life , Skin , Skin Diseases
10.
J Immunol ; 196(3): 1419-29, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26740106

ABSTRACT

One of the mechanisms by which malignancies can induce immune suppression is through the production of cytokines that affect the maturation and differentiation of inflammatory cells in the tumor microenvironment. Semaphorin 4D (Sema4D) is a proangiogenic cytokine produced by several malignancies, which has been described in the regulation of the immune system. In the present study, we examined the role of human head and neck squamous cell carcinoma (HNSCC)-secreted Sema4D on myeloid cell differentiation. CD33(+) cells cultured in HNSCC cell line-derived conditioned medium differentiated into myeloid derived suppressor cells (MDSC) (CD33(+)CD11b(+)HLA-DR(-/low)). The addition of anti-Sema4D Ab to HNSCC conditioned medium significantly reduced the expansion of the MDSC population. Similarly, knockdown of Sema4D in an HNSCC cell line resulted in a loss of MDSC function as shown by a decrease in the production of the immune-suppressive cytokines arginase-1, TGF-ß, and IL-10 by MDSC, concomitant with recovery of T cell proliferation and IFN-γ production following stimulation of CD3/CD28. Importantly, CD33(+) myeloid and T cells cultured in conditioned medium of HNSCC cells in which Sema4D was knocked down promoted antitumor inflammatory profile, through recovery of the effector T cells (CD4(+)T-bet(+) and CD8(+)T-bet(+)), as well as a decrease in regulatory T cells (CD4(+)CD25(+)FOXP3(+)). We also showed that Sema4D was comparable to GM-CSF in its induction of MDSC. Collectively, this study describes a novel immunosuppressive role for Sema4D in HNSCC through induction of MDSC, and it highlights Sema4D as a therapeutic target for future studies to enhance the antitumorigenic inflammatory response in HNSCC and other epithelial malignancies.


Subject(s)
Antigens, CD/immunology , Carcinoma, Squamous Cell/immunology , Head and Neck Neoplasms/immunology , Immune Tolerance/immunology , Myeloid Cells/immunology , Semaphorins/immunology , Tumor Escape/immunology , Cell Differentiation/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Immunoblotting , Lymphocyte Activation/immunology , Myeloid Cells/cytology , RNA, Small Interfering , Squamous Cell Carcinoma of Head and Neck , T-Lymphocytes, Regulatory/immunology , Transfection
11.
Article in English | WPRIM (Western Pacific) | ID: wpr-728678

ABSTRACT

The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K⁺ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K⁺ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K⁺ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K⁺ channel) related acid-sensitive K⁺ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K⁺ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K⁺ channel (TASK1 and 3) in addition to inwardly rectifying K⁺ channel.


Subject(s)
Animals , Rats , Analgesics, Opioid , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Hydrogen-Ion Concentration , Membrane Potentials , Neurons , RNA, Messenger , Spinal Cord , Substantia Gelatinosa
12.
Article in English | WPRIM (Western Pacific) | ID: wpr-165658

ABSTRACT

BACKGROUND: The role of increased insulin resistance in the pathogenesis of type 2 diabetes has been emphasized in Asian populations. Thus, we evaluated the proportion of insulin resistance and the insulin secretory capacity in patients with early phase type 2 diabetes in Korea. METHODS: We performed a cross-sectional analysis of 1,314 drug-naive patients with newly diagnosed diabetes from primary care clinics nationwide. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as an index to measure insulin resistance, which was defined as a HOMA-IR > or =2.5. Insulin secretory defects were classified based on fasting plasma C-peptide levels: severe ( or =1.7 ng/mL). RESULTS: The mean body mass index (BMI) was 25.2 kg/m2; 77% of patients had BMIs >23.0 kg/m2. Up to 50% of patients had central obesity based on their waist circumference (> or =90 cm in men and 85 cm in women), and 70.6% had metabolic syndrome. Overall, 59.5% of subjects had insulin resistance, and 20.2% demonstrated a moderate to severe insulin secretory defect. Among those with insulin resistance, a high proportion of subjects (79.0%) had a mild or no insulin secretory defect. Only 2.6% of the men and 1.9% of the women had both insulin resistance and a moderate to severe insulin secretory defect. CONCLUSION: In this study, patients with early phase type 2 diabetes demonstrated increased insulin resistance, but preserved insulin secretion, with a high prevalence of obesity and metabolic syndrome.


Subject(s)
Female , Humans , Male , Asian People , Body Mass Index , C-Peptide , Cross-Sectional Studies , Diabetes Mellitus, Type 2 , Fasting , Homeostasis , Insulin Resistance , Insulin , Korea , Obesity , Obesity, Abdominal , Plasma , Prevalence , Primary Health Care , Waist Circumference
13.
J Immunol ; 190(1): 458-68, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23225892

ABSTRACT

Graft-versus-host disease (GVHD) remains a significant complication of allogeneic transplantation. We previously reported that the adenosine A(2A) receptor (A(2A)R) specific agonist, ATL146e, decreases the incidence and severity of GVHD in a mouse transplant model. There is increasing interest in treatments that increase CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) to suppress GVHD. Our current study found in vitro that A(2A)R selective agonists enhanced TGF-ß-induced generation of mouse Tregs 2.3- to 3-fold. We demonstrated in vivo suppression of GVHD with specific A(2A)R agonists in two different murine GVHD transplant models associated with profound increases in both circulating and target tissue Tregs of donor origin. Three different A(2A)R agonists of differing potency, ATL146e, ATL370, and ATL1223, all significantly inhibited GVHD-associated weight loss and mortality. At the same time, Tregs shown to be of donor origin increased 5.1- to 7.4-fold in spleen, 2.7- to 4.6-fold in peripheral blood, 2.3- to 4.7-fold in colon, and 3.8- to 4.6-fold in skin. We conclude that specific activation of A(2A)R inhibits acute GVHD through an increase of donor-derived Tregs. Furthermore, the increased presence of Tregs in target tissues (colon and skin) of A(2A)R-specific agonist-treated mice is likely the mechanistic basis for the anti-inflammatory effect preventing acute GVHD.


Subject(s)
Adenosine A2 Receptor Agonists/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Down-Regulation/immunology , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Purines/pharmacology , T-Lymphocytes, Regulatory/immunology , Up-Regulation/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Cyclohexanecarboxylic Acids/administration & dosage , Female , Graft vs Host Disease/metabolism , Immune Tolerance/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Purines/administration & dosage , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/transplantation , Transforming Growth Factor beta/physiology
16.
Biochem Biophys Res Commun ; 391(1): 634-9, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19932681

ABSTRACT

Adiponectin is expressed in adipose tissue by adipogenic transcription factors including PPARgamma, C/EBPalpha, and ADD1/SREBP1c. Because cAMP-response element binding protein (CREB) is also a central transcriptional activator of adipocyte differentiation, we evaluated CREB to determine if it stimulates adiponectin gene expression. To accomplish this, we evaluated the effects of activated CREB on the promoter activity of the mouse adiponectin gene, and identified the cAMP-response element (CRE) in the promoter. The constitutively active form of CREB increased the promoter activity of the mouse adiponectin gene. In addition, transfection studies using 5' serial deleted promoters revealed the presence of a putative CRE located between the -1250 and -1000bp region. Furthermore, an electrophoresis mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that CREB bound to the region between -1022 and -995 in the adiponectin promoter. Insulin-like growth factor (IGF-1), which activate CREB, increased the adiponectin promoter activity. However, this stimulation was prevented by the dominant negative form of CREB (ACREB) and pretreatment with PD098059, indicating that IGF-1 stimulate adiponectin expression through CREB phosphorylation via the ERK pathway. Importantly, the transactivation of adiponectin expression by CREB was inhibited by ATF3. Coimmunoprecipitation and GST pull-down assay revealed that ATF3 bound to CREB and prevented CREB phosphorylation induced during differentiation of 3T3-L1 adipocytes. Collectively, these findings demonstrate that CREB is a positive regulator of mouse adiponectin gene expression in adipocytes, which play an important role in the regulation of adiponectin expression in response to growth factor.


Subject(s)
Adipocytes/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Transcriptional Activation , 3T3-L1 Cells , Activating Transcription Factor 3/metabolism , Adiponectin/genetics , Animals , Base Sequence , Insulin-Like Growth Factor I/metabolism , Mice , Promoter Regions, Genetic
17.
Yonsei Medical Journal ; : 870-876, 2010.
Article in English | WPRIM (Western Pacific) | ID: wpr-33817

ABSTRACT

PURPOSE: Marginal grafts should be used more actively in Asian countries where deceased donor transplantation is unpopular. We modified a quantitative donor scoring system proposed by Nyberg and his colleagues and developed a donor scoring system in order to assess the quality of deceased donor grafts and their prognostic value as an initial effort to promote usage of marginal donors. MATERIALS AND METHODS: We retrospectively evaluated 337 patients. RESULTS: A scoring system was derived from six donor variables [age, 0-25; renal function, 0-4; history of hypertension, 0-4; Human Leukocyte Antigen (HLA) mismatch, 0-3; body weight, 0-1; cause of death, 0-3 points]. Donor grafts were stratified by scores: grade A, 0-10; grade B, 11-20; grade C, 21-30; and grade D, 31-40 points. Donor grades significantly correlated with estimated glomerular filtration rate (eGFR) at 6 months (A, 64.0 mL/min/1.73 m2; B, 57.0 mL/min/1.73 m2; C, 46.8 mL/min/1.73 m2; p < 0.001). The five-year graft survival rate was also lower in grade C than grade A (74% vs. 93%, p = 0.002). Donors in grade C and D were regarded as marginal donors. The proportion of marginal donors was much lower in Korea, compared with data from the United Network for Organ Sharing (15.2% vs. 29%). CONCLUSION: Considering the scarcity of deceased donor kidneys and the relatively better graft outcome with lower grade-donors in Korea, it is worth increasing the usage of marginal grafts.


Subject(s)
Adolescent , Adult , Female , Humans , Male , Middle Aged , Cadaver , Death , Glomerular Filtration Rate , Graft Survival , Kidney/physiology , Kidney Transplantation/methods , Republic of Korea , Retrospective Studies , Tissue Donors
18.
Article in English | WPRIM (Western Pacific) | ID: wpr-44284

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death in renal allograft recipients with functioning graft. Our study aimed to determine the incidence and the risk factors of cardiovascular disease after renal transplantation in Korea. We retrospectively analyzed 430 adult recipients who underwent kidney transplantation between January 1997 and February 2007. CVD was defined as a composite outcome of ischemic heart disease, cerebrovascular accident and peripheral vascular disease. Mean age of recipients was 40.0+/-11.8 yr. Mean duration of follow-up was 72+/-39 months. The cumulative incidence of CVD after renal transplantation was 2.4% at 5 yr, 5.4% at 10 yr and 11.4% at 12 yr. Multivariate analysis revealed that recipient's age, diabetes mellitus and duration of dialysis before transplantation were associated with post-transplant CVD (hazard ratio 1.843 [95% CI, 1.005-3.381], 3.846 [95% CI, 1.025-14.432] and 3.394 [95% CI, 1.728-6.665] respectively). In conclusion, old age, duration of dialysis and diabetes mellitus are important risk factors for post-transplant CVD, although the incidence of post-renal transplant CVD is lower in Korea than that in western countries.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Age Factors , Cardiovascular Diseases/epidemiology , Diabetes Complications , Incidence , Kidney Transplantation , Multivariate Analysis , Renal Dialysis , Republic of Korea , Retrospective Studies , Risk Factors
19.
Biol Pharm Bull ; 31(2): 273-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18239286

ABSTRACT

Cisplatin is one of the most effective antineoplastic drugs, but it has undesirable side effects such as hepatotoxicity at high doses. This study investigated the protective effect of macelignan, isolated from Myristica fragrans HOUTT. (nutmeg), against cisplatin-induced hepatotoxicity and the possible mechanisms involved in these effects in mice. Pretreatment with macelignan for 4 d significantly prevented the increased serum enzymatic activities of alanine and aspartate aminotransferase in a dose-dependent manner. The results also showed that the protective effects of macelignan on cisplatin-induced hepatotoxicity may be associated with the mitogen activated protein kinase (MAPK) signaling pathway. Cisplatin-induced phosphorylation of c-Jun N-terminal kinase1/2 (JNK1/2) and extracellular signal-regulated kinase1/2 (ERK1/2) was abrogated by pretreatment with macelignan, however, that of p38 was not significantly affected. It was also found that macelignan attenuated the expression of phosphorylated c-Jun in cisplatin-treated mice. Accordingly, it is suggested that the hepatoprotective effects of macelignan could be related to activation of the MAPK signaling pathway, especially JNK and c-Jun, its substrate. The present findings suggest that co-treatment of cisplatin with macelignan may provide more advantage than cisplatin treatment alone in cancer therapy.


Subject(s)
Antineoplastic Agents/antagonists & inhibitors , Antineoplastic Agents/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Cisplatin/antagonists & inhibitors , Cisplatin/toxicity , JNK Mitogen-Activated Protein Kinases/physiology , Lignans/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blotting, Western , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Liver Function Tests , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , Myristica/chemistry , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription Factors/drug effects
20.
Cell Signal ; 20(5): 907-15, 2008 May.
Article in English | MEDLINE | ID: mdl-18289831

ABSTRACT

Neuronatin (Nnat) was initially identified as a selectively-expressed gene in neonatal brains, but its expression has been also identified in pancreatic beta-cells. Therefore, to investigate the possible functions that Nnat may serve in pancreatic beta-cells, two Nnat isotypes (alpha and beta) were expressed using adenoviruses in murine MIN6N8 pancreatic beta-cells, and the cellular fates and the effects of Nnat on insulin secretion, high glucose-induced apoptosis, and functional impairment were examined. Nnatalpha and Nnatbeta were primarily localized in the endoplasmic reticulum (ER), and their expressions increased insulin secretion by increasing intracellular calcium levels. However, under chronic high glucose conditions, the Nnatbeta to Nnatalpha ratio gradually increased in proportion to the length of exposure to high glucose levels. Moreover, adenovirally-expressed Nnatbeta was inclined to form aggresome-like structures, and we found that Nnatbeta aggregation inhibited the function of the proteasome. Therefore, when glucose is elevated, the expression of Nnatbeta sensitizes MIN6N8 cells to high glucose stress, which in turn, causes ER stress. As a result, expression of Nnatbeta increased hyperglycemia-induced apoptosis. In addition, the expression of Nnatbeta under high glucose conditions decreased the expression of genes important for beta-cell function, such as glucokinase (GCK), pancreas duodenum homeobox-1 (PDX-1), and insulin. Collectively, Nnat may play a critical factor in normal beta-cell function, as well as in the pathogenesis of type 2 diabetes.


Subject(s)
Apoptosis/drug effects , Glucose/pharmacology , Insulin-Secreting Cells/physiology , Insulin/metabolism , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Animals , Apoptosis/physiology , Base Sequence , Calcium/metabolism , Cell Line , DNA Primers/genetics , Endoplasmic Reticulum/metabolism , Gene Expression , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Membrane Proteins/genetics , Mice , Mice, Obese , Nerve Tissue Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/genetics , Protein Isoforms/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...