Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Biomedicines ; 12(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062109

ABSTRACT

Septic encephalopathy (SE) represents a severe inflammatory syndrome linked to elevated septic mortality rates, lacking specific therapeutic interventions, and often resulting in enduring neurological sequelae. The present investigation endeavors to elucidate the involvement of C-X-C Motif Chemokine Receptor 2 (CXCR2) in the pathogenesis of SE and to explore the potential of CXCR2 modulation as a therapeutic avenue for SE. Employing a murine SE model induced by lipopolysaccharide (LPS) administration, CXCR2 knockout mice and the CXCR2 inhibitor SB225002 were utilized to assess neutrophil recruitment, endothelial integrity, and transendothelial migration. Our findings substantiate that either CXCR2 deficiency or its inhibition curtails neutrophil recruitment without impacting their adhesion to cerebral endothelial cells. This phenomenon is contingent upon endothelial CXCR2 expression rather than CXCR2's presence on neutrophils. Furthermore, the CXCR2 blockade preserves the integrity of tight junction protein ZO-1 and mitigates F-actin stress fiber formation in cerebral endothelial cells following septic challenge. Mechanistically, CXCL1-mediated CXCR2 activation triggers cerebral endothelial actin contraction via Rho signaling, thereby facilitating neutrophil transmigration in SE. These observations advocate for the potential therapeutic efficacy of CXCR2 inhibition in managing SE.

2.
Biochem Biophys Res Commun ; 718: 150083, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38735138

ABSTRACT

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Subject(s)
Alveolar Epithelial Cells , Apoptosis , Lipopolysaccharides , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Animals , Humans , Male , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Apoptosis/drug effects , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Sepsis/metabolism , Sepsis/pathology , Signal Transduction/drug effects
3.
Eur J Obstet Gynecol Reprod Biol ; 296: 185-193, 2024 May.
Article in English | MEDLINE | ID: mdl-38458034

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN: Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS: In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION: DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.


Subject(s)
Endometriosis , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Tumor Necrosis Factor, Member 6b , Female , Humans , Endometriosis/metabolism , Endometrium/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Stromal Cells/metabolism , Receptors, Tumor Necrosis Factor, Member 6b/metabolism
4.
Opt Express ; 32(2): 2786-2803, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297799

ABSTRACT

Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.

5.
Elife ; 122023 Dec 14.
Article in English | MEDLINE | ID: mdl-38096226

ABSTRACT

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis through the Gli family of transcription factors. Gli is thought to be activated at the tip of primary cilium, but the underlying mechanism has remained poorly understood. Here, we show that Unc-51-like kinase 4 (Ulk4), a pseudokinase and a member of the Ulk kinase family, acts in conjunction with another Ulk family member Stk36 to promote Gli2 phosphorylation and Hh pathway activation. Ulk4 interacts with Stk36 through its N-terminal region containing the pseudokinase domain and with Gli2 via its regulatory domain to bridge the kinase and substrate. Although dispensable for Hh-induced Stk36 kinase activation, Ulk4 is essential for Stk36 ciliary tip localization, Gli2 phosphorylation, and activation. In response to Hh, both Ulk4 and Stk36 colocalize with Gli2 at ciliary tip, and Ulk4 and Stk36 depend on each other for their ciliary tip accumulation. We further show that ciliary localization of Ulk4 depends on Stk36 kinase activity and phosphorylation of Ulk4 on Thr1023, and that ciliary tip accumulation of Ulk4 is essential for its function in the Hh pathway. Taken together, our results suggest that Ulk4 regulates Hh signaling by promoting Stk36-mediated Gli2 phosphorylation and activation at ciliary tip.


Subject(s)
Hedgehog Proteins , Kruppel-Like Transcription Factors , Female , Pregnancy , Humans , Phosphorylation , Hedgehog Proteins/metabolism , Zinc Finger Protein Gli2/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Transcription Factors/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(2): 117-123, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872429

ABSTRACT

Objective To investigate the effects of C-X-C motif chemokine ligand 1 (CXCL1) and its receptor CXCR2 on the cerebral endothelial cytoskeleton rearrangement and permeability in the inflammation of septic encephalopathy. Methods The murine model of septic encephalopathy was established by intraperitoneal injection of LPS (10 mg/kg). The levels of TNF-α and CXCL1 in the whole brain tissue were detected by ELISA. The expression of CXCR2 was detected by Western blot analysis after bEND.3 cells were stimulated with 500 ng/mL LPS and 200 ng/mL TNF-α. After treated with CXCL1(150 ng/mL), the changes of endothelial filamentous actin (F-actin) rearrangement in bEND.3 cells were observed by immuno-fluorescence staining. In the cerebral endothelial permeability test, bEND.3 cells were randomly divided into PBS control group, CXCL1 group, and CXCL1 combined with CXCR2 antagonist SB225002 group. Then endothelial transwell permeability assay kit was used to detect the endothelial permeability changes. After stimulated with CXCL1 in bEND.3 cells, Western blot analysis was used to detect the expression of protein kinase B (AKT) and phosphorylated-AKT (p-AKT). Results Intraperitoneal injection of LPS significantly increased the levels of TNF-α and CXCL1 in the whole brain. LPS and TNF-α both upregulated the expression of CXCR2 protein in bEND.3 cells. CXCL1 stimulation induced the endothelial cytoskeleton contraction, increased paracellular gap formation and elevated endothelial permeability in bEND.3 cells, which was inhibited by the pretreatment with SB225002(CXCR2 antagonist). Furthermore, CXCL1 stimulation also enhanced the phosphorylation of AKT in bEND.3 cells. Conclusion CXCL1 induces the cytoskeleton contraction and increased permeability through AKT phosphorylation in bEND.3 cells, which can be effectively inhibited by CXCR2 antagonist SB225002.


Subject(s)
Brain Diseases , Endothelial Cells , Animals , Mice , Proto-Oncogene Proteins c-akt , Phosphorylation , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Cytoskeleton , Endothelium
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(12): 1091-1096, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36585231

ABSTRACT

Objective To investigate the effect of protein tyrosine phosphatase receptor type O (PTPRO) on the phagocytic activity of alveolar epithelial cells in LPS-induced acute lung injury. Methods Mice were randomly divided into the normal control group and LPS stimulation group. The infiltration of inflammatory cells was detected by HE staining. The cytokine TNF-α level in lung was analyzed by ELISA. Western blotting was performed to detect the effect of LPS on PTPRO protein expression in lung. After the expression of PTPRO in MLE-12 cells was silenced by siRNA in vitro, flow cytometry was used to detect the effects of LPS and PTPRO siRNA on the phagocytic activity of MLE-12 cells, and the effects of LPS and PTPRO siRNA on the expression of PTPRO, AKT and phosphorylated AKT protein were measured by Western blotting. Results After the establishment of murine acute lung injury model by LPS injection(1 mg/kg), the infiltrated polymorphonuclear leukocytes were markedly increased. The level of TNF-α in lung tissue and the expression of PTPRO in MLE-12 cells were both significantly increased after LPS stimulation. However, the activity of MLE-12 cells to phagocytose fluorescent microbeads was evidently decreased after silencing PTPRO. Furthermore, silencing PTPRO induced a remarkable decrease in the phosphorylation of AKT in MLE-12 cells. Conclusion PTPRO can promote phagocytic activity of MLE-12 cells via activating AKT signaling pathway.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Mice , Animals , Alveolar Epithelial Cells/metabolism , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Signal Transduction , Protein Tyrosine Phosphatases/adverse effects , Protein Tyrosine Phosphatases/metabolism
8.
Sensors (Basel) ; 22(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365961

ABSTRACT

A theoretical model for studying the temperature properties of singlemode-multimode-singlemode (SMS) fiber structure fabricated by absorptive multimode fiber (MMF) cladding is established. Moreover, an SMS-based temperature sensor is fabricated and experimentally demonstrated. Experimental results show that the dip wavelength of the transmission spectrum changes linearly with temperature, which is in good agreement with the simulated results obtained by using the model. Further, a comprehensive study of temperature characteristics affected by the thermo-optic effect, thermal expansion effect, and thermal effect of absorption characteristics is performed for SMS fiber optic structures with different refractive indexes, thermo-optic coefficients, and absorption properties of MMF cladding, MMF core diameters, and thermal expansion coefficients of packaging shell. According to the obtained rules, investigations are carried out into the thermal response of an SMS fiber structure resulting from combined thermal effects for temperature performance optimization. Excellent temperature stability with a temperature sensitivity of 0 pm/°C or good temperature sensitivity of -441.58 pm/°C is achieved accordingly.

9.
Acta Pharm Sin B ; 12(11): 4165-4179, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36386477

ABSTRACT

Enzalutamide (ENZ) is a second-generation androgen receptor (AR) antagonist used for the treatment of castration-resistant prostate cancer (CRPC) and reportedly prolongs survival time within a year of starting therapy. However, CRPC patients can develop ENZ resistance (ENZR), mainly driven by abnormal reactivation of AR signaling, involving increased expression of the full-length AR (ARfl) or dominantly active androgen receptor splice variant 7 (ARv7) and ARfl/ARv7 heterodimers. There is currently no efficient treatment for ENZR in CRPC. Herein, a small molecule LLU-206 was rationally designed based on the ENZ structure and exhibited potent inhibition of both ARfl and constitutively active ARv7 to inhibit PCa proliferation and suppress ENZR in CRPC. Mechanically, LLU-206 promoted ARfl/ARv7 protein degradation and decreased ARfl/ARv7 heterodimers through mouse double minute 2-mediated ubiquitination. Finally, LLU-206 exhibited favorable pharmacokinetic properties with poor permeability across the blood-brain barrier, leading to a lower prevalence of adverse effects, including seizure and neurotoxicity, than ENZ-based therapies. In a nutshell, our findings demonstrated that LLU-206 could effectively inhibit ARfl/ARv7-driven CRPC by dual-targeting of ARfl/ARv7 heterodimers and protein degradation, providing new insights for the design of new-generation AR inhibitors to overcome ARfl/ARv7-driven CRPC.

10.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-36271509

ABSTRACT

Graded Hedgehog (Hh) signaling is mediated by graded Cubitus interruptus (Ci)/Gli transcriptional activity, but how the Hh gradient is converted into the Ci/Gli activity gradient remains poorly understood. Here, we show that graded Hh induces a progressive increase in Ci phosphorylation at multiple Fused (Fu)/CK1 sites including a cluster located in the C-terminal Sufu-binding domain. We demonstrated that Fu directly phosphorylated Ci on S1382, priming CK1 phosphorylation on adjacent sites, and that Fu/CK1-mediated phosphorylation of the C-terminal sites interfered with Sufu binding and facilitated Ci activation. Phosphorylation at the N-terminal, middle, and C-terminal Fu/CK1 sites occurred independently of one another and each increased progressively in response to increasing levels of Hh or increasing amounts of Hh exposure time. Increasing the number of phospho-mimetic mutations of Fu/CK1 sites resulted in progressively increased Ci activation by alleviating Sufu-mediated inhibition. We found that the C-terminal Fu/CK1 phosphorylation cluster is conserved in Gli2 and contributes to its dose-dependent activation. Our study suggests that the Hh signaling gradient is translated into a Ci/Gli phosphorylation gradient that activates Ci/Gli by gradually releasing Sufu-mediated inhibition.


Subject(s)
Drosophila Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Phosphorylation , Drosophila Proteins/metabolism , DNA-Binding Proteins/metabolism
12.
Methods Mol Biol ; 2374: 121-137, 2022.
Article in English | MEDLINE | ID: mdl-34562248

ABSTRACT

The GPCR-family protein Smoothened (Smo) is an obligatory signal transducer of the Hedgehog (Hh) signaling pathway. Binding of Hh to its receptor Patched (Ptc) alleviates Ptc-mediated inhibition of Smo, allowing Smo to activate the Cubitus interruptus (Ci)/Gli family of zinc finger transcription factors. The activation of Smo is an early and crucial event in Hh signal transduction. Studies have shown that Hh induces cell surface/ciliary accumulation and phosphorylation of Smo by multiple kinases, including protein kinase A (PKA), casein kinase 1 (CK1), casein kinase 2 (CK2), G protein-coupled receptor kinase 2 (Gprk2/GRK2), and atypical PKC (aPKC). Here, we describe the assays used to examine the phosphorylation and activity of Smo, including in vitro kinase assay, phospho-specific antibodies, luciferase reporter assay, cell surface accumulation, and ciliary localization assays. These assays provide powerful tools to study Smo phosphorylation and activation, leading to mechanistic insight into Smo regulation.


Subject(s)
Smoothened Receptor/metabolism , Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Phosphorylation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor/genetics , Transcription Factors/metabolism
13.
Methods Mol Biol ; 2374: 139-147, 2022.
Article in English | MEDLINE | ID: mdl-34562249

ABSTRACT

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis by regulating the abundance, localization, and activity of the GPCR family protein Smoothened (Smo). Smo trafficking and subcellular accumulation are controlled by multiple posttranslational modifications (PTMs) including phosphorylation, ubiquitination, and sumoylation, which appears to be conserved from Drosophila to mammals. Smo ubiquitination is dynamically regulated by E3 ubiquitin ligases and deubiquitinases (dubs) and is opposed by Hh signaling. By contrast, Smo sumoylation is stimulated by Hh, which counteracts Smo ubiquitination by recruiting the dub USP8. We describe cell-base assays for Smo ubiquitination and its regulation by Hh and the E3 ligases in Drosophila. We also describe assays for Smo sumoylation in both Drosophila and mammalian cultured cells.


Subject(s)
Sumoylation , Ubiquitination , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Mammals/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Methods Mol Biol ; 2374: 213-229, 2022.
Article in English | MEDLINE | ID: mdl-34562256

ABSTRACT

Hedgehog (Hh) signaling culminates in the conversion of the latent transcription factor Cubitus interruptus (Ci)/Gli from a repressor form (CiR/GliR) into an activator form (CiA/GliA). While sequential phosphorylation of Ci/Gli by protein kinase A(PKA), glycogen synthase kinase 3 (GSK3), and casein kinase 1 (CK1) is essential for its proteolytic processing that generates CiR/GliR, sequential phosphorylation of Ci/Gli by the Fused (Fu)/Unc-51 like kinase (Ulk) family kinases Fu/Ulk3/Stk36 and CK1 contributes to the formation of CiA/GliA. Fu/Ulk3/Stk36-mediated phosphorylation of Ci/Gli is stimulated by Hh, leading to altered interaction between Ci/Gli and the Hh pathway repressor Sufu. Here we describe both in vitro and in vivo assays that determine Ci/Gli phosphorylation by the Fu/Ulk family kinases and its regulation by Hh.


Subject(s)
Phosphorylation , Casein Kinase I/genetics , Cyclic AMP-Dependent Protein Kinases , DNA-Binding Proteins , Glycogen Synthase Kinase 3 , Hedgehog Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Signal Transduction , Transcription Factors/metabolism , Zinc Finger Protein GLI1
15.
Opt Express ; 29(13): 20045-20062, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266103

ABSTRACT

Photonic hyper-parallel quantum information processing (QIP) can simplify the quantum circuit and improve the information-processing speed, as well as reduce the quantum resource consumption and suppress the photonic dissipation noise. Here, utilizing the singly charged semiconductor quantum dot (QD) inside single-sided optical microcavity as the potentially experimental platform, we propose five schemes for heralded four-qubit hyper-controlled-not (hyper-CNOT) gates, covering all cases of four-qubit hyper-CNOT gates operated on both the polarization and spatial-mode degrees of freedom (DoFs) of a two-photon system. The novel heralding mechanism improves the fidelity of each hyper-CNOT gate to unity in principle without the strict restriction of strong coupling. The adaptability and scalability of the schemes make the hyper-CNOT gates more accessible under current experimental technologies. These heralded high-fidelity photonic hyper-CNOT gates can therefore have immense utilization potentials in high-capacity quantum communication and fast quantum computing, which are of far-reaching significance for QIP.

16.
STAR Protoc ; 2(1): 100376, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33681825

ABSTRACT

The Fused (Fu) kinase is a key transducer of Hedgehog signaling, but its relevant substrates have remained obscured due to the difficulty of obtaining active Fu for in vitro kinase assay. Based on the mechanism of Fu activation in vivo, we engineered a constitutively active Fu and expressed it in Sf9 cells using the baculovirus system. The kinase was affinity purified and applied for in vitro kinase assay using recombinant GST-fusion proteins as substrates to identify Fu-specific phosphorylation sites. For complete details on the use and execution of this protocol, please refer to Han et al. (2019).


Subject(s)
Cloning, Molecular/methods , Hedgehog Proteins/isolation & purification , Proteins/isolation & purification , Animals , Baculoviridae/genetics , Cell Line , Hedgehog Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Recombinant Fusion Proteins/biosynthesis , Sf9 Cells , Signal Transduction
17.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32328627

ABSTRACT

Adult tissues and organs rely on resident stem cells to generate new cells that replenish damaged cells. To maintain homeostasis, stem cell activity needs to be tightly controlled throughout the adult life. Here, we show that the membrane-associated kinase Gilgamesh (Gish)/CK1γ maintains Drosophila adult midgut homeostasis by restricting JNK pathway activity and that Gish is essential for intestinal stem cell (ISC) maintenance under stress conditions. Inactivation of Gish resulted in aberrant JNK pathway activation and excessive production of multiple cytokines and growth factors that drive ISC overproliferation. Mechanistically, Gish restricts JNK activation by phosphorylating and destabilizing a small GTPase, Rho1. Interestingly, we find that Gish expression is down-regulated in aging guts and that increasing Gish activity in aging guts can restore tissue homeostasis. Hence, our study identifies Gish/CK1γ as a novel regulator of Rho1 and gatekeeper of tissue homeostasis whose activity is compromised in aging guts.


Subject(s)
Aging/metabolism , Casein Kinase I/metabolism , Drosophila Proteins/metabolism , Drosophila/anatomy & histology , Drosophila/metabolism , Homeostasis , Animals , Cellular Senescence , Drosophila/cytology
18.
Opt Express ; 28(3): 2857-2872, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121965

ABSTRACT

Hyperentangled-Bell-state analysis (HBSA) represents a key step in many quantum information processing schemes that utilize hyperentangled states. In this paper, we present a complete and faithful HBSA scheme for two-photon quantum systems hyperentangled in both the polarization and spatial-mode degrees of freedom, using a failure-heralded and fidelity-robust quantum swap gate for the polarization states of two photons (P-SWAP gate), constructed with a singly charged semiconductor quantum dot (QD) in a double-sided optical microcavity (double-sided QD-cavity system) and some linear-optical elements. Compared with the previously proposed complete HBSA schemes using different auxiliary tools such as parity-check quantum nondemonlition detectors or additional entangled states, our scheme significantly simplifies the analysis process and saves the quantum resource. Unlike the previous schemes based on the ideal optical giant circular birefringence induced by a single-electron spin in a double-sided QD-cavity system, our scheme guarantees the robust fidelity and relaxes the requirement on the QD-cavity parameters. These features indicate that our scheme may be more feasible and useful in practical applications based on the photonic hyperentanglement.

19.
Genes Dev ; 34(1-2): 53-71, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31857346

ABSTRACT

Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.


Subject(s)
Carcinogenesis/genetics , Cyclin-Dependent Kinases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Cyclin-Dependent Kinases/genetics , Drosophila melanogaster/genetics , Enzyme Activation , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/physiopathology , Mice , Organ Size/genetics , Phenylenediamines/pharmacology , Proteolysis , Pyrimidines/pharmacology , YAP-Signaling Proteins , Cyclin-Dependent Kinase-Activating Kinase
20.
Dev Cell ; 50(5): 610-626.e4, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31279575

ABSTRACT

Hedgehog (Hh) signaling culminates in the conversion of the latent transcription factor Cubitus interruptus (Ci)/Gli into its activator form (CiA/GliA), but the underlying mechanism remains poorly understood. Here, we demonstrate that Hh stimulates the phosphorylation of Ci by the Ser/Thr kinase Fused (Fu) and that Fu-mediated phosphorylation of Ci promotes its activation. We find that Fu directly phosphorylates Ci on Ser218 and Ser1230, which primes its further phosphorylation by CK1 on adjacent sties. These phosphorylation events alter Ci binding to the pathway inhibitor Suppressor of fused (Sufu) and facilitate the recruitment of Transportion and the transcriptional coactivator CBP. Furthermore, we provide evidence that Sonic hedgehog (Shh) activates Gli2 by stimulating its phosphorylation on conserved sites through the Fu-family kinases ULK3 and mFu/STK36 in a manner depending on Gli2 ciliary localization. Hence, Fu-family kinase-mediated phosphorylation of Ci/Gli serves as a conserved mechanism that activates the Hh pathway transcription factor.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Zinc Finger Protein Gli2/metabolism , 3T3 Cells , Animals , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line, Tumor , Cells, Cultured , Drosophila melanogaster , HEK293 Cells , Humans , Mice , Phosphorylation , Repressor Proteins/metabolism , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL