Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 28(1): 130, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637829

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARB) medications are widely prescribed. We sought to assess how pre-admission use of these medications might impact the response to angiotensin-II treatment during vasodilatory shock. METHODS: In a post-hoc subgroup analysis of the randomized, placebo-controlled, Angiotensin Therapy for High Output Shock (ATHOS-3) trial, we compared patients with chronic angiotensin-converting enzyme inhibitor (ACEi) use, and patients with angiotensin receptor blocker (ARB) use, to patients without exposure to either ACEi or ARB. The primary outcome was mean arterial pressure after 1-h of treatment. Additional clinical outcomes included mean arterial pressure and norepinephrine equivalent dose requirements over time, and study-drug dose over time. Biological outcomes included baseline RAS biomarkers (renin, angiotensin-I, angiotensin-II, and angiotensin-I/angiotensin-II ratio), and the change in renin from 0 to 3 h. RESULTS: We included n = 321 patients, of whom, 270 were ACEi and ARB-unexposed, 29 were ACEi-exposed and 22 ARB-exposed. In ACEi/ARB-unexposed patients, angiotensin-treated patients, compared to placebo, had higher hour-1 mean arterial pressure (9.1 mmHg [95% CI 7.6-10.1], p < 0.0001), lower norepinephrine equivalent dose over 48-h (p = 0.0037), and lower study-drug dose over 48-h (p < 0.0001). ACEi-exposed patients treated with angiotensin-II showed similarly higher hour-1 mean arterial pressure compared to ACEi/ARB-unexposed (difference in treatment-effect: - 2.2 mmHg [95% CI - 7.0-2.6], pinteraction = 0.38), but a greater reduction in norepinephrine equivalent dose (pinteraction = 0.0031) and study-drug dose (pinteraction < 0.0001) over 48-h. In contrast, ARB-exposed patients showed an attenuated effect of angiotensin-II on hour-1 mean arterial pressure versus ACEi/ARB-unexposed (difference in treatment-effect: - 6.0 mmHg [95% CI - 11.5 to - 0.6], pinteraction = 0.0299), norepinephrine equivalent dose (pinteraction < 0.0001), and study-drug dose (pinteraction = 0.0008). Baseline renin levels and angiotensin-I/angiotensin-II ratios were highest in ACEi-exposed patients. Finally, angiotensin-II treatment reduced hour-3 renin in ACEi/ARB-unexposed and ACEi-exposed patients but not in ARB-exposed patients. CONCLUSIONS: In vasodilatory shock patients, the cardiovascular and biological RAS response to angiotensin-II differed based upon prior exposure to ACEi and ARB medications. ACEi-exposure was associated with increased angiotensin II responsiveness, whereas ARB-exposure was associated with decreased responsiveness. These findings have clinical implications for patient selection and dosage of angiotensin II in vasodilatory shock. Trial Registration ClinicalTrials.Gov Identifier: NCT02338843 (Registered January 14th 2015).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Shock , Humans , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin II/therapeutic use , Renin , Angiotensin Receptor Antagonists/adverse effects , Shock/drug therapy , Norepinephrine/therapeutic use
2.
Ann Intensive Care ; 13(1): 128, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38103056

ABSTRACT

BACKGROUND: The physiological effects of renin-angiotensin system modulation in acute respiratory distress syndrome (ARDS) remain controversial and have not been investigated in randomized trials. We sought to determine whether angiotensin-II treatment is associated with improved oxygenation in shock-associated ARDS. METHODS: Post-hoc subgroup analysis of the Angiotensin Therapy for High Output Shock (ATHOS-3) trial. We studied patients who met modified Berlin ARDS criteria at enrollment. The primary outcome was PaO2/FiO2-ratio (P:F) at 48-h adjusted for baseline P:F. Secondary outcomes included oxygenation index, ventilatory ratio, PEEP, minute-ventilation, hemodynamic measures, patients alive and ventilator-free by day-7, and mortality. RESULTS: Of 81 ARDS patients, 34 (42%) and 47 (58%) were randomized to angiotensin-II or placebo, respectively. In angiotensin-II patients, mean P:F increased from 155 mmHg (SD: 69) at baseline to 265 mmHg (SD: 160) at hour-48 compared with no change with placebo (148 mmHg (SD: 63) at baseline versus 164 mmHg (SD: 74) at hour-48)(baseline-adjusted difference: + 98.4 mmHg [95%CI 35.2-161.5], p = 0.0028). Similarly, oxygenation index decreased by - 6.0 cmH2O/mmHg at hour-48 with angiotensin-II versus - 0.4 cmH2O/mmHg with placebo (baseline-adjusted difference: -4.8 cmH2O/mmHg, [95%CI - 8.6 to - 1.1], p = 0.0273). There was no difference in PEEP, minute ventilation, or ventilatory ratio. Twenty-two (64.7%) angiotensin-II patients had sustained hemodynamic response to treatment at hour-3 versus 17 (36.2%) placebo patients (absolute risk-difference: 28.5% [95%CI 6.5-47.0%], p = 0.0120). At day-7, 7/34 (20.6%) angiotensin-II patients were alive and ventilator-free versus 5/47(10.6%) placebo patients. Day-28 mortality was 55.9% in the angiotensin-II group versus 68.1% in the placebo group. CONCLUSIONS: In post-hoc analysis of the ATHOS-3 trial, angiotensin-II was associated with improved oxygenation versus placebo among patients with ARDS and catecholamine-refractory vasodilatory shock. These findings provide a physiologic rationale for trials of angiotensin-II as treatment for ARDS with vasodilatory shock. TRIAL REGISTRATION: ClinicalTrials.Gov Identifier: NCT02338843 (Registered January 14th 2015).

3.
Crit Care ; 24(1): 43, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32028998

ABSTRACT

BACKGROUND: In patients with vasodilatory shock, plasma concentrations of angiotensin I (ANG I) and II (ANG II) and their ratio may reflect differences in the response to severe vasodilation, provide novel insights into its biology, and predict clinical outcomes. The objective of these protocol prespecified and subsequent post hoc analyses was to assess the epidemiology and outcome associations of plasma ANG I and ANG II levels and their ratio in patients with catecholamine-resistant vasodilatory shock (CRVS) enrolled in the Angiotensin II for the Treatment of High-Output Shock (ATHOS-3) study. METHODS: We measured ANG I and ANG II levels at baseline, calculated their ratio, and compared these results to values from healthy volunteers (controls). We dichotomized patients according to the median ANG I/II ratio (1.63) and compared demographics, clinical characteristics, and clinical outcomes. We constructed a Cox proportional hazards model to test the independent association of ANG I, ANG II, and their ratio with clinical outcomes. RESULTS: Median baseline ANG I level (253 pg/mL [interquartile range (IQR) 72.30-676.00 pg/mL] vs 42 pg/mL [IQR 30.46-87.34 pg/mL] in controls; P <  0.0001) and median ANG I/II ratio (1.63 [IQR 0.98-5.25] vs 0.4 [IQR 0.28-0.64] in controls; P <  0.0001) were elevated, whereas median ANG II levels were similar (84 pg/mL [IQR 23.85-299.50 pg/mL] vs 97 pg/mL [IQR 35.27-181.01 pg/mL] in controls; P = 0.9895). At baseline, patients with a ratio above the median (≥1.63) had higher ANG I levels (P <  0.0001), lower ANG II levels (P <  0.0001), higher albumin concentrations (P = 0.007), and greater incidence of recent (within 1 week) exposure to angiotensin-converting enzyme inhibitors (P <  0.00001), and they received a higher norepinephrine-equivalent dose (P = 0.003). In the placebo group, a baseline ANG I/II ratio <1.63 was associated with improved survival (hazard ratio 0.56; 95% confidence interval 0.36-0.88; P = 0.01) on unadjusted analyses. CONCLUSIONS: Patients with CRVS have elevated ANG I levels and ANG I/II ratios compared with healthy controls. In such patients, a high ANG I/II ratio is associated with greater norepinephrine requirements and is an independent predictor of mortality, thus providing a biological rationale for interventions aimed at its correction. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02338843. Registered 14 January 2015.


Subject(s)
Angiotensin II/analysis , Angiotensin I/analysis , Shock/blood , Angiotensin I/blood , Angiotensin II/blood , Catecholamines/therapeutic use , Female , Humans , Male , Shock/physiopathology
4.
Clin Cancer Res ; 25(2): 478-486, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30279233

ABSTRACT

PURPOSE: The presence of hypoxia in the diseased bone marrow presents a new therapeutic target for multiple myeloma. Evofosfamide (formerly TH-302) is a 2-nitroimidazole prodrug of the DNA alkylator, bromo-isophosphoramide mustard, which is selectively activated under hypoxia. This trial was designed as a phase I/II study investigating evofosfamide in combination with dexamethasone, and in combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. PATIENTS AND METHODS: Fifty-nine patients initiated therapy, 31 received the combination of evofosfamide and dexamethasone, and 28 received the combination of evofosfamide, bortezomib, and dexamethasone. Patients were heavily pretreated with a median number of prior therapies of 7 (range: 2-15). All had previously received bortezomib and immunomodulators. The MTD, treatment toxicity, and efficacy were determined. RESULTS: The MTD was established at 340 mg/m2 evofosfamide + dexamethasone with dose-limiting mucositis at higher doses. For the combination of evofosfamide, bortezomib, and dexamethasone, no patient had a dose-limiting toxicity (DLT) and the recommended phase II dose was established at 340 mg/m2. The most common ≥grade 3 adverse events (AE) were thrombocytopenia (25 patients), anemia (24 patients), neutropenia (15 patients), and leukopenia (9 patients). Skin toxicity was reported in 42 (71%) patients. Responses included 1 very good partial response (VGPR), 3 partial response (PR), 2 minor response (MR), 20 stable disease (SD), and 4 progressive disease (PD) for evofosfamide + dexamethasone and 1 complete response (CR), 2 PR, 1 MR, 18 SD, and 5 PD for evofosfamide + bortezomib + dexamethasone. Disease stabilization was observed in over 80% and this was reflective of the prolonged overall survival of 11.2 months. CONCLUSIONS: Evofosfamide can be administered at 340 mg/m2 twice a week with or without bortezomib. Clinical activity has been noted in patients with heavily pretreated relapsed refractory multiple myeloma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Nitroimidazoles/therapeutic use , Phosphoramide Mustards/therapeutic use , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bortezomib/administration & dosage , Disease Progression , Drug Resistance, Neoplasm , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/etiology , Multiple Myeloma/mortality , Neoplasm Recurrence, Local , Neoplasm Staging , Nitroimidazoles/administration & dosage , Nitroimidazoles/adverse effects , Phosphoramide Mustards/administration & dosage , Phosphoramide Mustards/adverse effects , Retreatment , Treatment Outcome
5.
Am J Hematol ; 91(8): 800-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27169385

ABSTRACT

Tumor hypoxia causes resistance to radiation and chemotherapy. Evofosfamide (TH-302) has exhibited specific hypoxia-dependent cytotoxicity against primary acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) samples in vitro. Based on these findings, a Phase I study of evofosfamide was designed for patients with relapsed/refractory leukemia (NCT01149915). In this open-label study, patients were treated with evofosfamide as a 30-60 min/day infusion on Days 1-5 of a 21-day cycle (Arm A, n = 38) or as a continuous infusion over 120 hr over Days 1-5 of a 21-day cycle (Arm B, n = 11). Forty-nine patients were treated including 39 (80%) with AML and 9 (18%) with ALL. Patients had received a median of five prior therapies. In Arm A, the dose-limiting toxicities (DLTs) were grade 3 esophagitis, observed at a dose of 550 mg/m(2) . The maximum tolerated dose (MTD) was a daily dose of 460 mg/m(2) . In Arm B, the DLTs were grade 3 stomatitis and hyperbilirubinemia, observed at a daily dose of 460 mg/m(2) . The continuous infusion MTD was a daily dose of 330 mg/m(2) . Hypoxia markers HIF-1α and CAIX were highly expressed in leukemic bone marrow and were significantly reduced after evofosfamide therapy. The combined overall response rate in Arms A and B was 6% (2 CR/CRi and 1 PR), with all responses seen in Arm A. Evofosfamide has shown limited activity in heavily pretreated leukemia patients. Further evaluation investigating evofosfamide in combination with cytotoxic or demethylating agents is warranted. Am. J. Hematol. 91:800-805, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hypoxia , Leukemia/drug therapy , Nitroimidazoles/administration & dosage , Phosphoramide Mustards/administration & dosage , Adult , Aged , Bone Marrow/drug effects , Bone Marrow/pathology , Esophagitis/chemically induced , Female , Humans , Hyperbilirubinemia/chemically induced , Leukemia/complications , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/drug therapy , Male , Maximum Tolerated Dose , Middle Aged , Nitroimidazoles/adverse effects , Phosphoramide Mustards/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prodrugs/administration & dosage , Salvage Therapy , Stomatitis/chemically induced , Young Adult
6.
Blood ; 116(9): 1524-7, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20530289

ABSTRACT

Hypoxia is associated with increased metastatic potential and poor prognosis in solid tumors. In this study, we demonstrated in the murine 5T33MM model that multiple myeloma (MM) cells localize in an extensively hypoxic niche compared with the naive bone marrow. Next, we investigated whether hypoxia could be used as a treatment target for MM by evaluating the effects of a new hypoxia-activated prodrug TH-302 in vitro and in vivo. In severely hypoxic conditions, TH-302 induces G(0)/G(1) cell-cycle arrest by down-regulating cyclinD1/2/3, CDK4/6, p21(cip-1), p27(kip-1), and pRb expression, and triggers apoptosis in MM cells by up-regulating the cleaved proapoptotic caspase-3, -8, and -9 and poly ADP-ribose polymerase while having no significant effects under normoxic conditions. In vivo treatment of 5T33MM mice induces apoptosis of the MM cells within the bone marrow microenvironment and decreases paraprotein secretion. Our data support that hypoxia-activated treatment with TH-302 provides a potential new treatment option for MM.


Subject(s)
Apoptosis/drug effects , Hypoxia/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Nitroimidazoles/pharmacology , Oxygen/metabolism , Phosphoramide Mustards/pharmacology , Prodrugs/pharmacology , Animals , Blotting, Western , Bone Marrow/drug effects , Bone Marrow/metabolism , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Multiple Myeloma/metabolism , Neovascularization, Pathologic , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL