Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Zookeys ; 1203: 355-375, 2024.
Article En | MEDLINE | ID: mdl-38855792

A new family of antipatharian corals, Ameripathidae (Cnidaria: Anthozoa: Antipatharia), is established for Ameripathespseudomyriophylla Opresko & Horowitz, gen. et sp. nov. The new family resembles Myriopathidae and Stylopathidae in terms of the morphology of the polyps and tentacles and the pinnulate branching of the corallum. Phylogenetic analysis using a genomic data set of 741 conserved element loci indicates that the new family is sister to a clade containing the Myriopathidae, Stylopathidae, Antipathidae, and Aphanipathidae.

2.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695484

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Geologic Sediments , Oceans and Seas , Seawater , Thallium , Seawater/chemistry , Geologic Sediments/chemistry , Human Activities , Humans , Environmental Monitoring , Water Pollutants, Chemical , Isotopes
3.
Sci Rep ; 14(1): 1956, 2024 01 23.
Article En | MEDLINE | ID: mdl-38263423

The rapid expansion in commercial seaweed farming has highlighted the need for more effective monitoring methods, and health diagnostics. The production of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) is a trait that is tied to all major macroalgal groups and holds significance both for its involvement in the oxidative stress response and in the production of climatically relevant gases such as halocarbons. Observations of increased production of H2O2 by plants as a stress response, along with its comparative stability and ease of quantification in seawater in comparison to other ROS, suggest that H2O2 could be used as an indicator of health. In this study we characterized aqueous H2O2 dynamics across a diel cycle, in response to small shifts in light and temperature, as well as when exposed to acute stress. Our results reveal that exposure to acute stressors leads to rapid and sustained concentrations of H2O2 that are orders of magnitude higher than changes in H2O2 concentrations observed throughout the day. These findings provide tantalizing evidence that monitoring H2O2 could be used as a health indicator in seaweed aquaculture and serve as an early warning sign of stress.


Environmental Biomarkers , Seaweed , Hydrogen Peroxide , Reactive Oxygen Species , Vegetables , Aquaculture , Deuterium
4.
PNAS Nexus ; 2(11): pgad398, 2023 Nov.
Article En | MEDLINE | ID: mdl-38034097

Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments. These findings confirm previous contentions that extracellular superoxide production by corals can be independent of the activity of photosynthetic symbionts. The discovery of deep-sea corals and sponges as sources of ROS has implications for the physiology and ecology of benthic organisms and introduces a previously overlooked suite of redox reactants at depth.

5.
Environ Sci Technol ; 57(13): 5117-5124, 2023 04 04.
Article En | MEDLINE | ID: mdl-36930700

Coral reefs host some of the highest concentrations of biodiversity and economic value in the oceans, yet these ecosystems are under threat due to climate change and other human impacts. Reef monitoring is routinely used to help prioritize reefs for conservation and evaluate the success of intervention efforts. Reef status and health are most frequently characterized using diver-based surveys, but the inherent limitations of these methods mean there is a growing need for advanced, standardized, and automated reef techniques that capture the complex nature of the ecosystem. Here we draw on experiences from our own interdisciplinary research programs to describe advances in in situ diver-based and autonomous reef monitoring. We present our vision for integrating interdisciplinary measurements for select "case-study" reefs worldwide and for learning patterns within the biological, physical, and chemical reef components and their interactions. Ultimately, these efforts could support the development of a scalable and standardized suite of sensors that capture and relay key data to assist in categorizing reef health. This framework has the potential to provide stakeholders with the information necessary to assess reef health during an unprecedented time of reef change as well as restoration and intervention activities.


Anthozoa , Coral Reefs , Animals , Humans , Ecosystem , Biodiversity , Oceans and Seas , Conservation of Natural Resources/methods
6.
Nat Commun ; 14(1): 938, 2023 02 20.
Article En | MEDLINE | ID: mdl-36804536

Intertidal permeable sediments are crucial sites of organic matter remineralization. These sediments likely have a large capacity to produce reactive oxygen species (ROS) because of shifting oxic-anoxic interfaces and intense iron-sulfur cycling. Here, we show that high concentrations of the ROS hydrogen peroxide are present in intertidal sediments using microsensors, and chemiluminescent analysis on extracted porewater. We furthermore investigate the effect of ROS on potential rates of microbial degradation processes in intertidal surface sediments after transient oxygenation, using slurries that transitioned from oxic to anoxic conditions. Enzymatic removal of ROS strongly increases rates of aerobic respiration, sulfate reduction and hydrogen accumulation. We conclude that ROS are formed in sediments, and subsequently moderate microbial mineralization process rates. Although sulfate reduction is completely inhibited in the oxic period, it resumes immediately upon anoxia. This study demonstrates the strong effects of ROS and transient oxygenation on the biogeochemistry of intertidal sediments.


Geologic Sediments , Hypoxia , Humans , Reactive Oxygen Species , Geologic Sediments/analysis , Sulfur , Sulfates/metabolism , Oxygen/metabolism
7.
Sensors (Basel) ; 22(17)2022 Sep 03.
Article En | MEDLINE | ID: mdl-36081142

Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2-) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.


Ecosystem , Superoxides , Coral Reefs , Reactive Oxygen Species , Seawater
8.
Science ; 376(6593): 578-579, 2022 05 06.
Article En | MEDLINE | ID: mdl-35511977

Oxybenzone-based sunscreens are increasing the mortality rates of stressed corals.


Anthozoa , Animals , Coral Reefs , Sunscreening Agents
9.
Sensors (Basel) ; 22(5)2022 Feb 22.
Article En | MEDLINE | ID: mdl-35270854

Based on knowledge of their production pathways, and limited discrete observations, a variety of short-lived chemical species are inferred to play active roles in chemical cycling in the sea. In some cases, these species may exert a disproportionate impact on marine biogeochemical cycles, affecting the redox state of metal and carbon, and influencing the interaction between organisms and their environment. One such short-lived chemical is superoxide, a reactive oxygen species (ROS), which undergoes a wide range of environmentally important reactions. Yet, due to its fleeting existence which precludes traditional shipboard analyses, superoxide concentrations have never been characterized in the deep sea. To this end, we have developed a submersible oceanic chemiluminescent analyzer of reactive intermediate species (SOLARIS) to enable continuous measurements of superoxide at depth. Fluidic pumps on SOLARIS combine seawater for analysis with reagents in a spiral mixing cell, initiating a chemiluminescent reaction that is monitored by a photomultiplier tube. The superoxide in seawater is then related to the quantity of light produced. Initial field deployments of SOLARIS have revealed high-resolution trends in superoxide throughout the water column. SOLARIS presents the opportunity to constrain the distributions of superoxide, and any number of chemiluminescent species in previously unexplored environments.


Seawater , Superoxides , Carbon , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Seawater/chemistry , Superoxides/analysis , Superoxides/metabolism
10.
Environ Sci Technol ; 55(23): 16236-16245, 2021 12 07.
Article En | MEDLINE | ID: mdl-34825822

Manganese (Mn) oxides are considered as the primary oxidant of trivalent chromium [Cr(III)] in the environment. Microbial activities are responsible for the majority of Mn oxide formation in nature, thus likely influencing Cr(III) oxidation. Previous studies have been limited to Cr(III) oxidation by bacterial Mn oxides. Herein, we report coupled Mn(II) and Cr(III) oxidation in the presence of three Mn(II)-oxidizing Ascomycete fungi. In contrast to the previously reported inhibitory effect of Cr(III) on bacterial Mn(II) oxidation, varying effects of Cr(III) on fungal Mn(II) oxidation were observed, which may be linked to their Mn(II)-oxidation mechanisms. Under the concentrations of Mn(II) and Cr(III) applied in this study, Cr(III) promoted Mn(II) oxidation if it was mediated by hyphae-associated processes, but inhibited Mn(II) oxidation if it was achieved via extracellular enzymes/metabolites. The Cr(III) oxidation rate and extent were affected by Cr(III) speciation, Cr(VI) removal capacity (i.e., adsorption/reduction) of fungi, and organic content. The morphology and spatial relationship of Mn oxides with fungi varied, depending on fungal species and Cr(III) presence. Our findings highlight the importance of Mn(II)-oxidizing fungi in biogeochemical cycles of Mn and Cr and have significant implications for the origin of geogenic Cr(VI) and stability of reduced chromium in contaminated environments.


Ascomycota , Manganese Compounds , Adsorption , Bacteria , Chromium , Oxidation-Reduction , Oxides
11.
Environ Sci Technol ; 55(18): 12383-12392, 2021 09 21.
Article En | MEDLINE | ID: mdl-34494430

Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15-36% inorganic additives, primarily calcium carbonate (13-34%) and titanium dioxide (TiO2; 1-2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68-94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.


Carbon , Plastics , Oceans and Seas , Polyethylene , Sunlight
12.
Sci Adv ; 7(22)2021 05.
Article En | MEDLINE | ID: mdl-34039603

Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom's plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among "typical" eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.

13.
mSystems ; 6(2)2021 Apr 13.
Article En | MEDLINE | ID: mdl-33850041

Microbial relationships are critical to coral health, and changes in microbiomes are often exhibited following environmental disturbance. However, the dynamics of coral-microbial composition and external factors that govern coral microbiome assembly and response to disturbance remain largely uncharacterized. Here, we investigated how antibiotic-induced disturbance affects the coral mucus microbiota in the facultatively symbiotic temperate coral Astrangia poculata, which occurs naturally with high (symbiotic) or low (aposymbiotic) densities of the endosymbiotic dinoflagellate Breviolum psygmophilum We also explored how differences in the mucus microbiome of natural and disturbed A. poculata colonies affected levels of extracellular superoxide, a reactive oxygen species thought to have both beneficial and detrimental effects on coral health. Using a bacterial and archaeal small-subunit (SSU) rRNA gene sequencing approach, we found that antibiotic exposure significantly altered the composition of the mucus microbiota but that it did not influence superoxide levels, suggesting that superoxide production in A. poculata is not influenced by the mucus microbiota. In antibiotic-treated A. poculata exposed to ambient seawater, mucus microbiota recovered to its initial state within 2 weeks following exposure, and six bacterial taxa played a prominent role in this reassembly. Microbial composition among symbiotic colonies was more similar throughout the 2-week recovery period than that among aposymbiotic colonies, whose microbiota exhibited significantly more interindividual variability after antibiotic treatment and during recovery. This work suggests that the A. poculata mucus microbiome can rapidly reestablish itself and that the presence of B. psygmophilum, perhaps by supplying nutrients, photosynthate, or other signaling molecules, exerts influence on this process.IMPORTANCE Corals are animals whose health is often maintained by symbiotic microalgae and other microorganisms, yet they are highly susceptible to environmental-related disturbances. Here, we used a known disruptor, antibiotics, to understand how the coral mucus microbial community reassembles itself following disturbance. We show that the Astrangia poculata microbiome can recover from this disturbance and that individuals with algal symbionts reestablish their microbiomes in a more consistent manner compared to corals lacking symbionts. This work is important because it suggests that this coral may be able to recover its mucus microbiome following disturbance, it identifies specific microbes that may be important to reassembly, and it demonstrates that algal symbionts may play a previously undocumented role in microbial recovery and resilience to environmental change.

14.
Front Microbiol ; 12: 610497, 2021.
Article En | MEDLINE | ID: mdl-33643238

Manganese (Mn) oxides are among the strongest oxidants and sorbents in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and manganese peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Here we use a combination of chemical and in-gel assays and bulk mass spectrometry to demonstrate secretome-based Mn(II) oxidation in three phylogenetically diverse Ascomycetes that is mechanistically distinct from hyphal-associated Mn(II) oxidation on solid substrates. We show that Mn(II) oxidative capacity of these fungi is dictated by species-specific secreted enzymes and varies with secretome age, and we reveal the presence of both Cu-based and FAD-based Mn(II) oxidation mechanisms in all 3 species, demonstrating mechanistic redundancy. Specifically, we identify candidate Mn(II)-oxidizing enzymes as tyrosinase and glyoxal oxidase in Stagonospora sp. SRC1lsM3a, bilirubin oxidase in Stagonospora sp. and Paraconiothyrium sporulosum AP3s5-JAC2a, and GMC oxidoreductase in all 3 species, including Pyrenochaeta sp. DS3sAY3a. The diversity of the candidate Mn(II)-oxidizing enzymes identified in this study suggests that the ability of fungal secretomes to oxidize Mn(II) may be more widespread than previously thought.

15.
Ann Rev Mar Sci ; 13: 177-200, 2021 01.
Article En | MEDLINE | ID: mdl-32956016

Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process.


Aquatic Organisms/metabolism , Biota , Reactive Oxygen Species/metabolism , Animals , Anthozoa/metabolism , Aquatic Organisms/classification , Humans , NADPH Oxidases , Phylogeny , Phytoplankton/metabolism , Seaweed/metabolism
16.
ISME Commun ; 1(1): 35, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-36739337

The keystone marine nitrogen fixer Trichodesmium thrives in high-dust environments. While laboratory investigations have observed that Trichodesmium colonies can access the essential nutrient iron from dust particles, less clear are the biochemical strategies underlying particle-colony interactions in nature. Here we demonstrate that Trichodesmium colonies engage with mineral particles in the wild with distinct molecular responses. We encountered particle-laden Trichodesmium colonies at a sampling location in the Southern Caribbean Sea; microscopy and synchrotron-based imaging then demonstrated heterogeneous associations with iron oxide and iron-silicate minerals. Metaproteomic analysis of individual colonies by a new low-biomass approach revealed responses in biogeochemically relevant proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper, and zinc. The iron-storage protein ferritin was particularly enriched implying accumulation of mineral-derived iron, and multiple iron acquisition pathways including Fe(II), Fe(III), and Fe-siderophore transporters were engaged. While the particles provided key trace metals such as iron and nickel, there was also evidence that Trichodesmium was altering its strategy to confront increased superoxide production and metal exposure. Chemotaxis regulators also responded to mineral presence suggesting involvement in particle entrainment. These molecular responses are fundamental to Trichodesmium's ecological success and global biogeochemical impact, and may contribute to the leaching of particulate trace metals with implications for global iron and carbon cycling.

17.
J Geophys Res Oceans ; 125(10): e2020JC016747, 2020 Oct.
Article En | MEDLINE | ID: mdl-33282615

In the marine environment, the reactive oxygen species (ROS) superoxide is produced through a diverse array of light-dependent and light-independent reactions, the latter of which is thought to be primarily controlled by microorganisms. Marine superoxide production influences organic matter remineralization, metal redox cycling, and dissolved oxygen concentrations, yet the relative contributions of different sources to total superoxide production remain poorly constrained. Here we investigate the production, steady-state concentration, and particle-associated nature of light-independent superoxide in productive waters off the northeast coast of North America. We find exceptionally high levels of light-independent superoxide in the marine water column, with concentrations ranging from 10 pM to in excess of 2,000 pM. The highest superoxide concentrations were particle associated in surface seawater and in aphotic seawater collected meters off the seafloor. Filtration of seawater overlying the continental shelf lowered the light-independent, steady-state superoxide concentration by an average of 84%. We identify eukaryotic phytoplankton as the dominant particle-associated source of superoxide to these coastal waters. We contrast these measurements with those collected at an off-shelf station, where superoxide concentrations did not exceed 100 pM, and particles account for an average of 40% of the steady-state superoxide concentration. This study demonstrates the primary role of particles in the production of superoxide in seawater overlying the continental shelf and highlights the importance of light-independent, dissolved-phase reactions in marine ROS production.

18.
Geobiology ; 18(5): 594-605, 2020 09.
Article En | MEDLINE | ID: mdl-32336020

Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur-oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur-oxidizing microbial populations at deep-sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse-flow hydrothermal vent at 9°50'N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur-oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off-vent samples suggests that the bioavailability of mineral-derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral-derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep-sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.


Hydrothermal Vents , Metals , Minerals , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sulfides
19.
Proc Natl Acad Sci U S A ; 117(7): 3433-3439, 2020 02 18.
Article En | MEDLINE | ID: mdl-32015131

The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth's atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth's climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean.


Oxygen/chemistry , Superoxides/chemistry , Carbon/chemistry , Oceans and Seas , Oxidation-Reduction , Reactive Oxygen Species/chemistry , Seawater/chemistry
20.
Sci Rep ; 9(1): 18244, 2019 12 03.
Article En | MEDLINE | ID: mdl-31796791

Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.


Manganese Compounds/metabolism , Oxides/metabolism , Phototrophic Processes , Superoxides/metabolism , Chlorophyta/enzymology , Chlorophyta/metabolism , Cyanobacteria/enzymology , Cyanobacteria/metabolism , Diatoms/enzymology , Diatoms/metabolism , Hydrogen-Ion Concentration , Metabolic Networks and Pathways , Oxidation-Reduction
...