Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 195, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020380

ABSTRACT

BACKGROUND: Metastasis is the major cause of colorectal cancer (CRC) mortality. Emerging evidence suggests that long noncoding RNAs (lncRNAs) drive cancer metastasis and that their regulatory pathways could be targeted for preventing metastasis. However, the underlying mechanisms of lncRNAs in CRC metastasis remain poorly understood. METHODS: Microarray analysis was used to screen for differentially expressed lncRNAs. Transwell assays, fibronectin cell adhesion assays, and mouse metastasis models were utilized to evaluate the metastatic capacities of CRC in vitro and in vivo. Chromatin isolation by RNA purification, chromatin immunoprecipitation and chromosome conformation capture were applied to investigate the underlying mechanism involved. qRT‒PCR and transmission electron microscopy were performed to confirm macrophage polarization and the presence of cancer-derived exosomes. RESULTS: The lncRNA RP11-417E7.1 was screened and identified as a novel metastasis-associated lncRNA that was correlated with a poor prognosis. RP11-417E7.1 enhances the metastatic capacity of CRC cells in vivo and in vitro. Mechanistically, RP11-417E7.1 binding with High mobility group A1 (HMGA1) promotes neighboring thrombospondin 2 (THBS2) transcription via chromatin loop formation between its promoter and enhancer, which activates the Wnt/ß-catenin signaling pathway and facilitates CRC metastasis. Furthermore, exosomes derived from CRC cells transport THBS2 into macrophages, thereby inducing the M2 polarization of macrophages to sustain the prometastatic microenvironment. Notably, netropsin, a DNA-binding drug, suppresses chromatin loop formation mediated by RP11-417E7.1 at the THBS2 locus and significantly inhibits CRC metastasis in vitro and in vivo. CONCLUSIONS: This study revealed the novel prometastatic function and mechanism of the lncRNA RP11-417E7.1, which provides a potential prognostic indicator and therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms , Exosomes , Macrophages , RNA, Long Noncoding , Wnt Signaling Pathway , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Exosomes/metabolism , Macrophages/metabolism , Neoplasm Metastasis , Male , Female , Cell Line, Tumor , Prognosis , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic
2.
ACS Macro Lett ; 13(5): 599-606, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38683197

ABSTRACT

The high glutathione (GSH) level of the tumor microenvironment severely affects the efficacy of photodynamic therapy (PDT). The current GSH depletion strategies have difficulty meeting the dual needs of security and efficiency. In this study, we report a photosensitizer Chlorin e6 (Ce6) and hypoxia-activated prodrug tirapazamine (TPZ) coloaded cross-linked multifunctional polymersome (TPZ/Ce6@SSPS) with GSH-triggered continuous GSH depletion for enhanced photodynamic therapy and hypoxia-activated chemotherapy. At tumor sites, the disulfide bonds of TPZ/Ce6@SSPS react with GSH to realize decross-linking for on-demand drug release. Meanwhile, the generated highly reactive quinone methide (QM) can further deplete GSH. This continuous GSH depletion will amplify tumor oxidative stress, enhancing the PDT effect of Ce6. Aggravated tumor hypoxia induced by PDT activates the prodrug TPZ, resulting in an enhanced combination of PDT and hypoxia-activated chemotherapy. Both in vitro and in vivo results demonstrate the efficient GSH depletion and potent antitumor activities by TPZ/Ce6@SSPS. This work provides a strategy for the design of a continuous GSH depletion platform, which holds great promise for enhanced combination tumor therapy.


Subject(s)
Chlorophyllides , Glutathione , Photochemotherapy , Photosensitizing Agents , Prodrugs , Tirapazamine , Glutathione/metabolism , Photochemotherapy/methods , Tirapazamine/pharmacology , Animals , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Prodrugs/pharmacology , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Tumor Microenvironment/drug effects
3.
Front Oncol ; 12: 866289, 2022.
Article in English | MEDLINE | ID: mdl-35692800

ABSTRACT

Background: Individual immune-related alternative splicing (AS) events have been found to be significant in immune regulation and cancer prognosis. However, a comprehensive analysis of AS events in cancer cells based on immune-related genes (IRGs) has not been performed, and its clinical value is unknown. Methods: Colon cancer cases with AS data were obtained from TCGA, and then, we identified overall survival-related AS events (OS-ASEs) based on IRGs by univariate analyses. Using Lasso regression, multivariate Cox regression, Kaplan-Meier analysis and nomograms, we constructed an AS risk model based on the calculated risk score. Furthermore, associations of the risk score with clinical and immune features were confirmed through the Wilcoxon rank sum test, association analysis, etc. Finally, by qRT-PCR, cell coculture and CCK-8 analyses, we validated the significance of OS-ASEs in colon cancer cell lines and clinical samples. Results: A total of 3,119 immune-related AS events and 183 OS-ASEs were identified, and 9 OS-ASEs were ultimately used to construct a comprehensive risk model for colon cancer patients. Low-risk patients had better OS and DFS rates than high risk patients. Furthermore, a high risk score corresponded to high numbers of multiple tumour-infiltrating immune cells and high expression of HLA-D region genes and immune checkpoint genes. Notably, we identified for the first time that anti-PD-L1 or anti-CTLA-4 antibodies may decrease the OS of specific colon cancer patients in the low-risk group. Additionally, the in vitro experiment validated that CD46-9652-ES and PSMC5-43011-ES are positively correlated with the infiltration of immune cells and promote the growth of colon cancer cells. CD46-9652-ES can contribute to T cell-mediated tumour cell killing. PSMC5-43011-ES was observed to induce M2 polarization of macrophages. Conclusions: This study identified and validated immune-related prognostic AS signatures that can be used as a novel AS prognostic model and provide a novel understanding of the relationship between the immune microenvironment and clinical outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL