Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
NPJ Precis Oncol ; 8(1): 61, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431733

ABSTRACT

Tertiary lymphoid structure (TLS) contributes to the anti-tumor immune response, and predicts the prognosis of colorectal cancer patients. However, the potential impact of TLS in shaping the immune status of rectal adenocarcinoma, and the intrinsic relationship between TLS and neoadjuvant therapies (neoTx) remain unclear. We performed hematoxylin-eosin staining, immunohistochemical and biomolecular analyses to investigate TLS and tumor-infiltrating lymphocytes (TILs) in 221 neoTx-treated and 242 treatment-naïve locally advanced rectal cancer (LARC) patients. High TLS density was significantly associated with the absence of vascular invasion, a lower neutrophil-to-lymphocyte ratio, increased TLS maturity, a longer recurrence-free survival (RFS) (hazard ratio [HR] 0.2985 95% confidence interval [CI] 0.1894-0.4706, p < 0.0001) and enhanced infiltration of adaptive immune cells. Biomolecular analysis showed that high TLS-score was strongly associated with more infiltration of immune cells and increased activation of immune-related pathways. TLS+ tumors in pre-treatment specimens were associated with a higher proportion of good respond (62.5% vs. 29.8%, p < 0.0002) and pathological complete remission (pCR) (40.0% vs. 11.1%, p < 0.0001), and significantly increased RFS (HR 0.3574 95%CI 0.1489-0.8578 p = 0.0213) compared with TLS- tumors in the neoTx cohort, which was confirmed in GSE119409 and GSE150082. Further studies showed that neoTx significantly reduced TLS density and maturity, and abolished the prognostic value of TLS. Our study illustrates that TLS may have a key role in mediating the T-cell-inflamed tumor microenvironment, which also provides a new direction for neoTx, especially neoadjuvant immunotherapy, in LRAC patients.

2.
Ann Diagn Pathol ; 65: 152155, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37172528

ABSTRACT

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with a high mortality rate and extremely poor prognosis. TOP2A expression is associated with cell proliferation and cell cycle progression. We aimed to demonstrate the expression profile of TOP2A in MPM and its correlation with clinicopathological features. METHODS: Clinicopathological information from 100 MPM cases was collected at Beijing Shijitan Hospital, Capital Medical University. Immunohistochemistry (IHC) was performed to evaluate TOP2A levels. The associations between TOP2A levels and clinicopathological features or prognosis were analyzed. Clinical follow-up data were reviewed to determine correlations among the pathological prognostic factors using the Kaplan-Meier estimator and univariate/multivariate Cox proportional hazards regression models. RESULTS: Among the 100 MPM patients, there were 48 males and 52 females, with a median age of 54 years (range: 24-72 years). The cutoff curve was used to find the boundary value of the TOP2A-positive rate. TOP2A positive rate ≥ 11.97 % accounted for 48 % in tumor tissue. The TOP2A-positive rate was not associated with sex, age, asbestos exposure, peritoneal carcinomatosis index (PCI) score, or completeness of cytoreduction (CC) score in MPM. Univariate analysis revealed survival-related pathological parameters, including asbestos exposure, CA125, histological type, PCI score, CC score, Ki-67 index, and TOP2A positive rate. Multivariate analysis identified that asbestos exposure history, PCI score, Ki-67 proliferation index and TOP2A positive rate in tissue are independent prognostic factors. CONCLUSIONS: High expression of TOP2A is linked to better prognosis of MPM.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Peritoneal Neoplasms , Pleural Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Ki-67 Antigen/metabolism , Lung Neoplasms/pathology , Mesothelioma/diagnosis , Pleural Neoplasms/metabolism , Pleural Neoplasms/pathology , Prognosis
3.
Adv Sci (Weinh) ; 9(9): e2104134, 2022 03.
Article in English | MEDLINE | ID: mdl-35080145

ABSTRACT

Compromised immunosurveillance leads to chemotherapy resistance and disease relapse of hematological malignancies. Amino acid metabolism regulates immune responses and cancer; however, a druggable amino acid metabolite to enhance antitumor immunosurveillance and improve leukemia targeting-therapy efficacy remains unexplored. Here, an L-phenylalanine polymer, Metabolic Reprogramming Immunosurveillance Activation Nanomedicine (MRIAN), is invented to effectively target bone marrow (BM) and activate the immune surveillance in T-cell acute lymphoblastic leukemia (T-ALL) by inhibiting myeloid-derived suppressor cells (MDSCs) in T-ALL murine model. Stable-isotope tracer and in vivo drug distribution experiments show that T-ALL cells and MDSCs have enhanced cellular uptake of L-phenylalanine and MRIANs than normal hematopoietic cells and progenitors. Therefore, MRIAN assembled Doxorubicin (MRIAN-Dox) specifically targets T-ALL cells and MDSCs but spare normal hematopoietic cells and hematopoietic stem and progenitor cells with enhanced leukemic elimination efficiency. Consequently, MRIAN-Dox has reduced cardiotoxicity and myeloablation side effects in treating T-ALL mice. Mechanistically, MRIAN degrades into L-phenylalanine, which inhibits PKM2 activity and reduces ROS levels in MDSCs to disturb their immunosuppressive function and increase their differentiation toward normal myeloid cells. Overall, a novel amino acid metabolite nanomedicine is invented to treat T-ALL through the combination of leukemic cell targeting and immunosurveillance stimulation.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Amino Acids , Animals , Drug Carriers , Mice , Monitoring, Immunologic , Polymers , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes
4.
Front Cell Dev Biol ; 9: 753196, 2021.
Article in English | MEDLINE | ID: mdl-34765603

ABSTRACT

Hepatocellular carcinoma (HCC) has a poor prognosis due to the rapid disease progression and early metastasis. The metabolism program determines the proliferation and metastasis of HCC; however, the metabolic approach to treat HCC remains uncovered. Here, by analyzing the liver cell single-cell sequencing data from HCC patients and healthy individuals, we found that 6-phosphogluconolactonase (PGLS), a cytosolic enzyme in the oxidative phase of the pentose phosphate pathway (PPP), expressing cells are associated with undifferentiated HCC subtypes. The Cancer Genome Atlas database showed that high PGLS expression was correlated with the poor prognosis in HCC patients. Knockdown or pharmaceutical inhibition of PGLS impaired the proliferation, migration, and invasion capacities of HCC cell lines, Hep3b and Huh7. Mechanistically, PGLS inhibition repressed the PPP, resulting in increased reactive oxygen species level that decreased proliferation and metastasis and increased apoptosis in HCC cells. Overall, our study showed that PGLS is a potential therapeutic target for HCC treatment through impacting the metabolic program in HCC cells.

SELECTION OF CITATIONS
SEARCH DETAIL