Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 239
1.
Sci Rep ; 14(1): 3244, 2024 02 08.
Article En | MEDLINE | ID: mdl-38332164

Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic ß-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the ß-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.


Diabetes Mellitus, Experimental , Hyperglycemia , Lanosterol , Phenanthrenes , Animals , Mice , Bile Acids and Salts , Diabetes Mellitus, Experimental/metabolism , GTP-Binding Proteins/metabolism , Hyperglycemia/drug therapy , Insulin/metabolism , Insulin Secretion , Lanosterol/analogs & derivatives , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
2.
J Am Chem Soc ; 146(2): 1346-1355, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38170469

RNA therapeutics are of global interest because of their versatility in targeting a variety of intracellular and extracellular biomolecules. In that context, long double-stranded RNA (dsRNA) has been studied as an antitumor agent that activates the immune response. However, its performance is constrained by poor cancer selectivity and cell-penetration ability. Here, we designed and synthesized an oncolytic RNA hairpin pair (oHP) that was selectively cytotoxic toward cancer cells expressing abundant oncogenic microRNA-21 (miR-21). Although the structure of each hairpin RNA was thermodynamically metastable, catalytic miR-21 input triggered it to open to generate a long nicked dsRNA. We demonstrated that oHP functioned as a cytotoxic amplifier of information in the presence of miR-21 in various cancer cells and tumor-bearing mice. This work represents the first example of the use of short RNA molecules as build-up-type anticancer agents that are triggered by an oncogenic miRNA.


Antineoplastic Agents , MicroRNAs , Neoplasms , Animals , Mice , MicroRNAs/genetics , RNA, Double-Stranded , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/genetics
3.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38015437

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Exome , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Humans , DNA , Exome/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
4.
Microorganisms ; 11(10)2023 Sep 23.
Article En | MEDLINE | ID: mdl-37894035

Endophytic prokaryotes, bacteria, and archaea, are important microorganisms that benefit host plants by promoting plant growth and reducing stress. The objective of this study was to evaluate temporal shifts in the root endophytic prokaryotic communities associated with carrots (Daucus carota subsp. sativus) and the effect of organic matter application on them. Carrots were grown in a planter under five fertilizer treatments (weed compost, bark compost, cattle manure, chemical fertilizer, and no-fertilizer control) and the compositions of rhizosphere and root endosphere prokaryotic communities were determined via amplicon sequencing analysis targeting the 16S rRNA gene at 60 and 108 days after sowing. The results showed that the rhizosphere prokaryotic community compositions were stable despite different sampling times and fertilizer treatments; however, a greater temporal shift and an effect of the type of organic matter applied were observed in the endosphere prokaryotic communities. The differences in treatments resulted in significant differences in the abundance and Faith pyrogenetic diversity of the endosphere prokaryotic community. Genera, such as Burkholderia, Sphingomonas, and Rhodanobacter, that exhibit plant-growth-promoting and biocontrol activities, were detected regardless of the treatments, suggesting that they may play an important ecological role as the core endophytes in carrot roots.

5.
Microb Ecol ; 86(4): 2552-2559, 2023 Nov.
Article En | MEDLINE | ID: mdl-37405460

In this study, we aimed to investigate the effects of soil type and field management on bacterial communities in paddy soils, taking into account the differences in soil physicochemical properties. We collected soil samples from 51 paddy fields in six prefectures in Japan. The paddy fields were managed under organic regimes (26 fields), natural-farming regimes (12 fields), or conventional regimes (13 fields). The paddy fields were classified into four soil types: andosol, gray lowland soil, gley soil, and gray upland soil. Soil DNA was extracted from the soil samples collected 2 to 10 weeks after the flooding, and the 16S rRNA gene amplicon sequencing analysis was performed. The bacterial community compositions were dominated by the phylum Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, and Firmicutes in all fields. The difference in soil type had significant effects on α-diversities of the bacterial communities, although the field management had no effect. The soil bacterial communities in the gley soils and gray upland soils individually formed different groups from those in the other soils, while the andosol and gray lowland soils tended to form relatively similar bacterial communities. On the other hand, the effects of the field management were estimated to be smaller than those of soil type. The ß-diversity of the bacterial community compositions were significantly correlated with soil pH, total nitrogen content, total carbon content, and divalent iron content. Our results suggest that the soil microbial community in paddy fields may be strongly influenced by soil physiochemical properties derived from differences in soil type.


Soil Microbiology , Soil , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Agriculture/methods
6.
Int J Mol Sci ; 24(10)2023 May 20.
Article En | MEDLINE | ID: mdl-37240382

All-trans retinoic acid (ATRA) promotes myoblast differentiation into myotubes. Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is a candidate ATRA-responsive gene; however, its role in skeletal muscles remains unclear. Here, we demonstrated that during the differentiation of murine C2C12 myoblasts into myotubes, Lgr6 mRNA expression transiently increased before the increase in the expression of the mRNAs encoding myogenic regulatory factors, such as myogenin, myomaker, and myomerger. The loss of LGR6 decreased the differentiation and fusion indices. The exogenous expression of LGR6 up to 3 and 24 h after the induction of differentiation increased and decreased the mRNA levels of myogenin, myomaker, and myomerger, respectively. Lgr6 mRNA was transiently expressed after myogenic differentiation in the presence of a retinoic acid receptor α (RARα) agonist and an RARγ agonist in addition to ATRA, but not in the absence of ATRA. Furthermore, a proteasome inhibitor or Znfr3 knockdown increased exogenous LGR6 expression. The loss of LGR6 attenuated the Wnt/ß-catenin signaling activity induced by Wnt3a alone or in combination with Wnt3a and R-spondin 2. These results indicate that LGR6 promotes myogenic differentiation and that ATRA is required for the transient expression of LGR6 during differentiation. Furthermore, LGR6 expression appeared to be downregulated by the ubiquitin-proteasome system involving ZNRF3.


Tretinoin , Wnt Signaling Pathway , Mice , Animals , Myogenin/genetics , Myogenin/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Myoblasts/metabolism , RNA, Messenger/genetics , Cell Differentiation/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
7.
J Am Chem Soc ; 145(1): 135-142, 2023 01 11.
Article En | MEDLINE | ID: mdl-36538570

Artificial nucleic acids have attracted much attention as potential cancer immunotherapeutic materials because they are recognized by a variety of extracellular and intracellular nucleic acid sensors and can stimulate innate immune responses. However, their low selectivity for cancer cells causes severe systemic immunotoxicity, making it difficult to use artificial nucleic acid molecules for immune cancer therapy. To address this challenge, we herein introduce a hairpin DNA assembly technology that enables cancer-selective immune activation to induce cytotoxicity. The designed artificial DNA hairpins assemble into long nicked double-stranded DNA triggered by intracellular microRNA-21 (miR-21), which is overexpressed in various types of cancer cells. We found that the products from the hairpin DNA assembly selectively kill miR-21-abundant cancer cells in vitro and in vivo based on innate immune activation. Our approach is the first to allow selective oncolysis derived from intracellular DNA self-assembly, providing a powerful therapeutic modality to treat cancer.


Antineoplastic Agents , Biosensing Techniques , MicroRNAs , Nucleic Acids , MicroRNAs/genetics , DNA , Immunity, Innate
8.
Pathol Int ; 73(1): 39-44, 2023 Jan.
Article En | MEDLINE | ID: mdl-36398869

Gene amplification and protein overexpression of human epidermal growth factor receptor type 2 (HER2) are specific targets for HER2-targeting drugs in breast, gastric, salivary gland, and colorectal cancers. The histopathological determination of HER2 status is crucial for treatment, highlighting the importance of improving HER2 detection accuracy in clinical practice. We prepared tissue microarray (TMA) slides for use as control slides for the standardization of gastric HER2 testing. Four human gastric cancer cell lines with HER2 scores of 3+, 2+, 1+, and 0 were xenografted in NOG mice. The TMA slides were constructed using samples from three different areas in these tumors. Staining properties were determined using six clinical kits for HER2. In TMA, HER2-positive tumors with HER2 scores of 3+ and 2+ showed good staining with all diagnostic kits, and the tissue images were similar to those of clinical samples. Xenograft tumor slides could potentially be used as external controls to standardize staining conditions for a variety of kits and may improve the accuracy of HER2 detection in clinical practice.


Breast Neoplasms , Stomach Neoplasms , Humans , Animals , Mice , Female , Biomarkers, Tumor/metabolism , Heterografts , Immunohistochemistry , Receptor, ErbB-2/metabolism , Stomach Neoplasms/pathology
9.
Gan To Kagaku Ryoho ; 50(13): 1600-1602, 2023 Dec.
Article Ja | MEDLINE | ID: mdl-38303354

There is a liver damage in a serious side effect of regorafenib. Case 1 was a 54-year-old woman, and she had an operation of rectal cancer and metastasized to multiple organs afterwards and started regorafenib as third-line. Erythema exudativum multiform developed on the 8th day after a start and regorafenib was canceled once and reduced on the 21st day when a skin symptom was relieved and restarted. However, because a significant rise of AST, ALT, T -Bil was recognized afterwards, regorafenib was canceled on the 27th day and enforced steroid pulse therapy and was relieved afterwards. Case 2 was a 61-year-old woman, and she had an operation of ascending colon cancer, ovarian metastasis and peritoneum dissemination. Regorafenib was started by frequent occurrence lung metastasis, cancerous pleurisy afterwards as fifth-line. Dissemination erythema developed on the 16th day and a liver damage developed on the 22nd day. Because a rise of AST, ALT went and was prolonged, liver biopsy was enforced in a cause close inspection purpose on the 45th day. A medicamentosus liver damage was diagnosed. The liver enzyme decreased afterwards. It may be easy to make the liver damage by regorafenib serious, and attention is necessary.


Colonic Neoplasms , Ovarian Neoplasms , Pyridines , Female , Humans , Middle Aged , Colonic Neoplasms/pathology , Phenylurea Compounds/adverse effects , Ovarian Neoplasms/drug therapy , Erythema/chemically induced , Liver/pathology
10.
PLoS One ; 17(12): e0278580, 2022.
Article En | MEDLINE | ID: mdl-36516179

According to previous clinical studies, the prevalence of non-alcoholic fatty liver disease (NAFLD) is higher in men than women only during the reproductive age. Animal models of NAFLD that reflect sex differences in humans have not been established. In this study, we examined sex differences in the hepatic lesions of Tsumura Suzuki obese diabetes (TSOD) and db/db mice, which are representative genetic models of NAFLD. Male and female TSOD and db/db mice were fed with a normal diet and tap water ad libitum. Six male and female mice of each strain were sacrificed at the ages of 3 and 9 months, respectively, and serum biochemical, pathological, and molecular analyses were performed. Serum aspartate aminotransferase (AST) levels were significantly higher in male than female mice of both strains at the age of 3 months; however, at 9 months, significant sex differences were not observed. Similarly, alanine aminotransferase (ALT) levels were significantly higher in male mice than in female TSOD mice at the age of 3 months; however, at 9 months, significant sex differences were not observed. Image analysis of histological slides revealed that the frequency of the steatotic area was significantly higher in male than female db/db mice at the age of 3 months; however, significant sex differences were not observed at 9 months. The frequency of Sirius red-positive fibrotic area was significantly higher in male than female mice in both strains at the age of 3 months; however, significant sex differences were not observed at 9 months. Serum AST and ALT levels and hepatic steatosis and fibrosis in TSOD and db/db mice showed age-dependent sex differences consistent with those observed in human NAFLD. These mice may be suitable for studying sex differences of the disease.


Diabetes Mellitus , Non-alcoholic Fatty Liver Disease , Female , Mice , Male , Humans , Animals , Infant , Non-alcoholic Fatty Liver Disease/pathology , Sex Characteristics , Disease Models, Animal , Obesity/pathology , Diabetes Mellitus/pathology , Mice, Inbred Strains , Mice, Obese , Alanine Transaminase , Liver/pathology
11.
J Agric Food Chem ; 70(49): 15499-15508, 2022 Dec 14.
Article En | MEDLINE | ID: mdl-36458736

This study aimed to obtain information on the transport form and pathway from the intestine to the peripheral tissues and on the intestinal absorption and metabolism properties of oleamide (cis-9-octadecenamide). Oleamide was primarily transported via the portal vein. Density gradient centrifugation indicated that plasma oleamide was enriched in the fractions containing albumin in the portal and peripheral blood. Oleamide formed a complex with albumin in an endothermic reaction (apparent Kd = 4.4 µM). The CD36 inhibitor inhibited the oleamide uptake into the intestinal epithelial Caco-2 cells, and oleamide decreased the cell surface CD36 level. The fatty acid amide hydrolase (FAAH) inhibitor increased the transepithelial transport of oleamide across Caco-2 cells and the plasma oleamide concentration in mice intragastrically administered with oleamide. These results indicate that oleamide is transported primarily via the portal vein as a complex with albumin. Furthermore, we suggest that oleamide is taken up via CD36 in the small intestine and degraded intracellularly by FAAH.


Intestinal Absorption , Intestine, Small , Humans , Mice , Animals , Caco-2 Cells , Albumins
12.
J Clin Biochem Nutr ; 71(2): 112-121, 2022 Sep.
Article En | MEDLINE | ID: mdl-36213788

Dietary ß-carotene induces muscle hypertrophy and prevents muscle atrophy in red slow-twitch soleus muscles, but not in white fast-twitch extensor digitorum longus (EDL) muscles and gastrocnemius muscles. However, it remains unclear why these beneficial effects of ß-carotene are elicited in soleus muscles. To address this issue, we focused on carotenoid transporters in skeletal muscles. In mice, Cd36 mRNA levels were higher in red muscle than in white muscle. The siRNA-mediated knockdown of CD36 decreased ß-carotene uptake in C2C12 myotubes. In soleus muscles, CD36 knockdown inhibited ß-carotene-induced increase in muscle mass. Intravenous injection of the hypoxia marker pimonidazole produced more pimonidazole-bound proteins in soleus muscles than in EDL muscles, and the hypoxia-inducible factor-1 (HIF-1) α protein level was higher in soleus muscles than in EDL muscles. In C2C12 myotubes, hypoxia increased the expression of CD36 and HIF-1α at the protein and mRNA levels, and HIF-1α knockdown reduced hypoxia-induced increase in Cd36 mRNA level. In soleus muscles, HIF-1α knockdown reduced Cd36 mRNA level. These results indicate that CD36 is predominantly involved in ß-carotene-induced increase in soleus muscle mass of mice. Furthermore, we demonstrate that CD36 expression depends on HIF-1α in the soleus muscles of mice, even under normal physiological conditions.

13.
J Biol Chem ; 298(12): 102619, 2022 12.
Article En | MEDLINE | ID: mdl-36272644

Thermoregulation is a process by which core body temperature is maintained in mammals. Males typically have a lower body temperature than females. However, the effects of androgens, which show higher levels in males, on adrenergic receptor-mediated thermogenesis remain unclear. Here, we demonstrate that androgen-androgen receptor (AR) signaling suppresses the ß-adrenergic agonist-induced rise of core body temperature using castrated and AR knockout (ARKO) male mice. Furthermore, in vitro mechanistic studies show that activated AR inhibits cAMP response element (CRE)-mediated transcription by suppressing cAMP response element-binding protein (CREB) phosphorylation. The elevation of body temperature induced by the ß-adrenergic agonist CL316243 was higher in ARKO and castrated mice than in the control mice. Similarly, CL316243 induced a greater increase in Uncoupling protein 1 (Ucp1) expression and CREB phosphorylation in the brown adipose tissue of ARKO mice than in that of controls. We determined that activation of AR by dihydrotestosterone suppressed ß3-agonist- or forskolin-induced CRE-mediated transcription, which was prevented by AR antagonist. AR activation also suppressed CREB phosphorylation induced by forskolin. Moreover, we found AR nuclear localization, but not transcriptional activity, was necessary for the suppression of CRE-mediated transcription. Finally, modified mammalian two-hybrid and immunoprecipitation analyses suggest nuclear AR and CREB form a protein complex both in the presence and absence of dihydrotestosterone and forskolin. These results suggest androgen-AR signaling suppresses ß-adrenoceptor-induced UCP1-mediated brown adipose tissue thermogenesis by suppressing CREB phosphorylation, presumably owing to a protein complex with AR and CREB. This mechanism explains sexual differences in body temperature, at least partially.


Adipose Tissue, Brown , Cyclic AMP Response Element-Binding Protein , Receptors, Androgen , Thermogenesis , Animals , Female , Male , Mice , Adipose Tissue, Brown/metabolism , Androgens/metabolism , Colforsin/pharmacology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Dihydrotestosterone/pharmacology , Receptors, Adrenergic/genetics , Receptors, Adrenergic/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Uncoupling Protein 1/genetics , Body Temperature
14.
Med Biol Eng Comput ; 60(8): 2335-2348, 2022 Aug.
Article En | MEDLINE | ID: mdl-35748974

Congenital tracheal stenosis (CTS) with unilateral pulmonary agenesis (UPA) is characterized by the absence of one or both lungs in the hemithorax and is often associated with airway distortion. Some UPA patients have high mortality and morbidity even postoperatively, and it remains unclear whether surgery increases the energy flux needed to drive airflow. Here, we used pre- and postoperative patient-specific airway models to numerically investigate tracheal flow in patients with CTS, especially flow associated with right UPA (CTS-RUPA). Airflow was simulated with the large-eddy model, and energy flux was investigated to quantify airway performance and the contribution of surgical intervention. Although energy flux decreased postoperatively, clinical respiratory status did not improve. Standard surgical intervention for CTS, which expands the minimal cross-sectional area, decreased energy flux, i.e., improved airway performance. The simulation also included artificial airways with a straightened bend or reduced tracheal lumen roughness. The numerical results clearly showed interindividual differences in the percent reduction of energy flux caused by straightening the tracheal bend versus correcting tracheal lumen roughness. Although this study was limited to small sample size, these numerical results indicated that energy flux alone is insufficient to evaluate breathing performance in patients with CTS-RUPA but it can be used to estimate airway performance.


Lung , Trachea , Abnormalities, Multiple , Constriction, Pathologic , Humans , Infant , Lung/abnormalities , Lung Diseases , Retrospective Studies , Trachea/abnormalities , Tracheal Stenosis/congenital
15.
Sci Rep ; 12(1): 8098, 2022 05 16.
Article En | MEDLINE | ID: mdl-35577913

Tumor-infiltrating lymphocytes (TILs) and programmed cell death 1 ligand 1 (PD-L1) are established prognostic and predictive biomarkers for certain breast cancer subsets. However, their association with the immune response complexity is not fully understood. Therefore, we analyzed the association between the immune cell fractions in breast cancer tissues and histologically assessed TIL (hTIL) and PD-L1 (hPD-L1). Forty-five tumor and eighteen blood samples were collected from patients with breast cancer. Total leukocyte counts, frequency of 11 immune cell populations, and PD-L1 expression in each cell fraction were evaluated by flow cytometry. TILs and PD-L1 were assessed by hematoxylin and eosin staining and immunohistochemistry, respectively. A higher hTIL score showed association with increased leukocyte infiltration, higher CD4+ and CD8+ T cell proportions, and lower natural killer and natural killer T cell proportions. PD-L1 was highly expressed in nonclassical monocytes, monocyte/macrophages, myeloid-derived suppressor cells, myeloid dendritic cells, dendritic cells, and other lineages in tumors. hPD-L1 positivity reflected PD-L1 expression accurately in these fractions, as well as increased leukocyte infiltration in tumors. These results indicate that hTILs reflect differences in the immune responses in the tumor microenvironment, and certain immune cell fractions are favorably expressed in the PD-L1 pathway in breast cancer microenvironments.


B7-H1 Antigen , Breast Neoplasms , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , B7-H1 Antigen/metabolism , Breast/pathology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes , Female , Humans , Prognosis , Tumor Microenvironment/immunology
16.
Biosci Biotechnol Biochem ; 86(8): 1095-1105, 2022 Jul 22.
Article En | MEDLINE | ID: mdl-35641089

Physical inactivity due to prolonged sedentary behavior induces obesity. Therefore, we investigated whether housing mice in small cages to mimic sedentary behavior induced obesity and whether dietary oleamide (cis-9,10-octadeceneamide) suppressed the induced obesity. A single oral administration of oleamide (50 mg/kg) to mice resulted in the accumulation of the exogenous oleamide in abdominal visceral fat. Next, mice were housed in small cages and oleamide (50 mg/kg/d) was orally administered for 12 weeks. Housing mice in small cages impaired glucose tolerance and increased food efficiency. It also increased body weight and abdominal fat mass. Dietary oleamide improved the impairment and inhibited their increase in mice housed in small cages. Furthermore, dietary oleamide suppressed the mRNA expression of inflammation-related factors in the abdominal fat of mice housed in small cages. Hence, these results indicate that although housing mice in small cages induces obesity and increases abdominal fat mass, dietary oleamide suppresses the obesity.


Housing , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/drug therapy , Oleic Acids/pharmacology
17.
Int J Hematol ; 115(6): 860-872, 2022 Jun.
Article En | MEDLINE | ID: mdl-35301681

BACKGROUND: The glycoengineered, humanized anti-CD20 antibody obinutuzumab is indicated for previously untreated or relapsed/refractory CD20-positive follicular lymphoma (FL). However, the effectiveness of obinutuzumab retreatment in relapsed/refractory FL after prior obinutuzumab-containing therapy is unclear. To address this issue, we investigated the antitumor activity of obinutuzumab plus bendamustine in obinutuzumab-resistant tumors established from a human non-Hodgkin lymphoma xenograft model. MATERIALS AND METHODS: Obinutuzumab-resistant tumors (SU-DHL-4-OR-18-8) were established from an SU-DHL-4 xenograft model by repeated administration of obinutuzumab. Antitumor activity was evaluated based on tumor volume after treatment with obinutuzumab on Day 1, 8, and 15 and/or bendamustine on Day 1 and 2. Intratumoral natural killer (NK) cells/macrophages were evaluated by immunohistochemistry and flow cytometry. RESULTS: In SU-DHL-4-OR-18-8 xenografted tumors, intratumoral NK cells/macrophages after obinutuzumab treatment were significantly decreased compared with parent tumors on Day 4. The endoplasmic reticulum stress sensor phospho-IRE1 was also decreased. In SU-DHL-4-OR-18-8 tumors, bendamustine treatment increased phospho-IRE1 on Day 4 and intratumor NK cells/macrophages on Day 10. Obinutuzumab combined with bendamustine significantly increased antitumor activity compared with each single agent on Day 29, with an increase in chemoattractant CCL6 expression on Day 10. CONCLUSIONS: Coadministration of bendamustine in obinutuzumab retreatment may be effective against obinutuzumab-resistant tumors.


Lymphoma, Follicular , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bendamustine Hydrochloride , Humans , Lymphoma, Follicular/drug therapy , Protein Serine-Threonine Kinases , Rituximab
18.
Mol Biol Rep ; 49(6): 4421-4433, 2022 Jun.
Article En | MEDLINE | ID: mdl-35218445

BACKGROUND: Obinutuzumab, a Type II anti-CD20 antibody, is used to treat follicular lymphoma. A major mode of action of obinutuzumab is antibody-dependent cellular cytotoxicity (ADCC). Knowledge of the mechanisms of resistance to obinutuzumab is important for the development of next-line strategies to follow obinutuzumab-containing therapy, including obinutuzumab retreatment. Unfortunately, the mechanisms by which tumor cells acquire resistance to ADCC are still poorly understood. To address this, we examined the mechanisms of resistance to obinutuzumab-induced ADCC and the combination efficacy of obinutuzumab and clinically available agents in the established resistant cells. METHODS AND RESULTS: We established cells resistant to obinutuzumab-induced ADCC using the non-Hodgkin lymphoma cell line RL and examined their mechanisms of resistance and the combination efficacy of obinutuzumab and clinically available agents. Comprehensive analysis by RNA sequencing of resistance mechanisms revealed that abnormal Fas signaling decreased sensitivity to ADCC in resistant clones. Combination treatment with prednisolone, a component of CHOP and CVP, was found to enhance ADCC sensitivity of RL cells and resistant clones and to significantly suppress tumor growth in xenograft models. Treatment with prednisolone upregulated expression of CD20 and an apoptosis-inducing protein BIM, which might augment perforin/granzyme B-mediated cell death. Furthermore, pretreatment of the effector cells with bendamustine enhanced ADCC activity, and treatment with obinutuzumab plus bendamustine showed significant antitumor efficacy in xenograft models. It was speculated that bendamustine upregulates ADCC activity by potentiating granules-mediated cell killing. CONCLUSIONS: Our study revealed a novel mechanism underlying obinutuzumab-induced ADCC resistance and indicated that ADCC resistance could be overcome by combining obinutuzumab with prednisolone or bendamustine. This study provides a scientific rationale for obinutuzumab-retreatment in combination with clinically available chemotherapeutic agents for obinutuzumab resistant follicular lymphoma.


Lymphoma, Follicular , Antibodies, Monoclonal, Humanized , Antibody-Dependent Cell Cytotoxicity , Bendamustine Hydrochloride/therapeutic use , Humans , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/pathology , Prednisolone , Rituximab/pharmacology , Rituximab/therapeutic use
19.
NPJ Sci Food ; 6(1): 4, 2022 Jan 14.
Article En | MEDLINE | ID: mdl-35031622

The identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.

20.
Biochem Biophys Res Commun ; 595: 41-46, 2022 03 05.
Article En | MEDLINE | ID: mdl-35093639

Curcumin is a yellow pigment in turmeric (Curcuma longa) with various physiological effects in the body. To elucidate the molecular mechanisms by which bioactive compounds exert their function, identification of their molecular targets is crucial. In this study, we show that curcumin activates G protein-coupled receptor 97 (GPR97). Curcumin dose-dependently activated serum-response element-, but not serum-response factor-response element-, nuclear factor of activated T-cell-response element-, or cAMP-response element-, mediated transcription in cells overexpressed with GPR97. The structure-activity relationship indicated that (i) the double-bonds of the central 7-carbon chain were essential for activation; (ii) a methoxy group on the aromatic ring was required for maximal activity; (iii) the addition of glucuronic acid moiety or a methoxy group to the aromatic ring, but not the methylation of the aromatic p-hydroxy group, eliminated the activity; (iv) the stability of curcumin would be related to receptor activation. Both mutant GPR97(T250A) lacking the cleavage at GPCR proteolysis site and mutant GPR97(ΔN) lacking the N-terminal extracellular region were activated by curcumin and its related compounds similar to wild-type GPR97. In contrast, the synthetic glucocorticoid beclomethasone dipropionate and l-Phe activated wild-type GPR97 and GPR97(T250A), but not GPR97(ΔN). Moreover, curcumin exerted an additive effect on the activation of wild-type GPR97 with beclomethasone dipropionate, but not with l-Phe. Taken together, these results indicate that curcumin activates GPR97 coupled to Gi/Go subunit, and suggest that curcumin and glucocorticoid activate GPR97 in a different manner.


Beclomethasone/pharmacology , Curcumin/pharmacology , Gene Expression Regulation/drug effects , Receptors, G-Protein-Coupled/genetics , Beclomethasone/chemistry , Curcuma/chemistry , Curcumin/chemistry , Curcumin/metabolism , Glucocorticoids/chemistry , Glucocorticoids/pharmacology , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Molecular Structure , Mutation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Receptors, G-Protein-Coupled/metabolism , Response Elements/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Structure-Activity Relationship
...