Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Res Sq ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38699338

Epigenetic processes, including DNA methylation, are emerging as key areas of interest for their potential roles as biomarkers and contributors to the risk of neurodevelopmental, psychiatric, and other brain-based disorders. Despite this growing focus, there remains a notable gap in our understanding of how DNA methylation correlates with individual variations in brain function and structure. Additionally, the dynamics of these relationships during developmental periods, which are critical windows during which many disorders first appear, are still largely unexplored. The current study extends the field by examining if peripheral DNA methylation of myelination-related genes predicts white matter volume in a healthy pediatric population [N = 250; females = 113; age range 2 months-14 years; Mage = 5.14, SDage = 3.60]. We assessed if DNA methylation of 17 myelin-related genes predict white matter volume and if age moderates these relationships. Results highlight low variability in myelin-related epigenetic variance at birth, which rapidly increases non-linearly with age, and that DNA methylation, measured at both the level of a CpG site or gene, is highly predictive of white matter volume, in early childhood but not late childhood. These novel findings propel the field forward by establishing that DNA methylation of myelin-related genes from a peripheral tissue is a predictive marker of white matter volume in children and is influenced by developmental stage. The research underscores the significance of peripheral epigenetic patterns as a proxy for investigating the effects of environmental factors, behaviors, and disorders associated with white matter.

2.
Int J Mol Sci ; 24(21)2023 Nov 05.
Article En | MEDLINE | ID: mdl-37958971

Autism spectrum disorder (ASD) is a neurodevelopmental disability and recent evidence suggests that autistic adults are more likely to develop Alzheimer's disease (Alz) and other dementias compared to neurotypical (NT) adults. The ε4-allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alz and negatively impacts cognition in middle-aged and older (MA+) adults. This study aimed to determine the impact of the APOE ε4-allele on verbal learning and memory in MA+ autistic adults (ages 40-71 years) compared to matched NT adults. Using the Auditory Verbal Learning Test (AVLT), we found that ε4 carriers performed worse on short-term memory and verbal learning across diagnosis groups, but there was no interaction with diagnosis. In exploratory analyses within sex and diagnosis groups, only autistic men carrying APOE ε4 showed worse verbal learning (p = 0.02), compared to autistic men who were not carriers. Finally, the APOE ε4-allele did not significantly affect long-term memory in this sample. These findings replicate previous work indicating that the APOE ε4-allele negatively impacts short-term memory and verbal learning in MA+ adults and presents new preliminary findings that MA+ autistic men may be vulnerable to the effects of APOE ε4 on verbal learning. Future work with a larger sample is needed to determine if autistic women may also be vulnerable.


Alzheimer Disease , Autism Spectrum Disorder , Autistic Disorder , Adult , Aged , Female , Humans , Male , Middle Aged , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Genotype , Neuropsychological Tests , Verbal Learning
...