Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 318(5): C954-C968, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32186932

ABSTRACT

The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.


Subject(s)
Kv1.2 Potassium Channel/genetics , Kv1.5 Potassium Channel/genetics , Pulmonary Arterial Hypertension/genetics , Receptors, Calcium-Sensing/genetics , Stromal Interaction Molecule 2/genetics , Calcium Channels/drug effects , Calcium Channels/genetics , Calcium Signaling/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Estrenes/pharmacology , HEK293 Cells , Humans , Indoles/pharmacology , Jagged-1 Protein/genetics , Membrane Potentials/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pyrrolidinones/pharmacology , Receptors, Calcium-Sensing/drug effects , Receptors, Notch/genetics , Single-Cell Analysis
2.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L10-L26, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31553627

ABSTRACT

Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel ß1 subunit (BKCaß1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaß1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.


Subject(s)
Down-Regulation/genetics , Familial Primary Pulmonary Hypertension/genetics , MicroRNAs/genetics , Potassium Channels, Voltage-Gated/genetics , Adolescent , Adult , Cells, Cultured , Familial Primary Pulmonary Hypertension/metabolism , Female , Humans , Male , Membrane Potentials/genetics , Middle Aged , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , RNA, Messenger/genetics , Up-Regulation/genetics , Vasoconstriction/genetics , Young Adult
3.
J Clin Oncol ; 20(14): 3130-6, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12118027

ABSTRACT

PURPOSE: To compare protracted venous infusion (PVI) fluorouracil (5-FU) with PVI 5-FU plus mitomycin (MMC) in patients with advanced pancreatic cancer in a multicenter, prospectively randomized study. PATIENTS AND METHODS: Two hundred eight patients were randomized to PVI 5-FU (300 mg/m(2)/d for a maximum of 24 weeks) or PVI 5-FU plus MMC (7 mg/m(2) every 6 weeks for four courses). The major end points were tumor response, survival, toxicity, and quality of life (QOL). RESULTS: The two treatment groups were balanced for baseline demographic factors, and 62% had metastatic disease. The overall response rate was 8.4% (95% confidence interval [CI]) 3.2% to 13.7% for patients treated with PVI 5-FU alone compared with 17.6%; 95% CI 10.3% to 25.1% for PVI 5-FU plus MMC (P =.04). Median failure-free survival was 2.8 months for PVI 5-FU and 3.8 months for PVI 5-FU plus MMC (P =.14). Median survival was 5.1 months for PVI 5-FU and 6.5 months for PVI 5-FU plus MMC (P =.34). Toxicities in both arms were mild. There was an increased incidence of neutropenia in the 5-FU plus MMC arm (P <.01), although no differences in infection were seen. No patients developed hemolytic uremic syndrome. Global QOL improved significantly after 24 weeks of treatment compared with baseline for patients receiving 5-FU plus MMC, although there was no statistically significant difference in QOL between arms. CONCLUSION: PVI 5-FU plus MMC resulted in a superior response rate in comparison with PVI 5-FU alone in advanced pancreatic cancer, but this did not translate into a survival advantage. These results emphasize the importance of chemotherapy in this setting and the continuing value of the fluoropyrimidines in pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Pancreatic Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibiotics, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Drug Administration Schedule , Female , Fluorouracil/administration & dosage , Humans , Infusions, Intravenous , Male , Middle Aged , Mitomycin/administration & dosage , Quality of Life , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...