Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Emerg Infect Dis ; 26(12): 2989-2993, 2020 12.
Article in English | MEDLINE | ID: mdl-33219658

ABSTRACT

The Onchocerca lupi nematode infects dogs, cats, and humans, but whether it can be spread by coyotes has been unknown. We conducted surveillance for O. lupi nematode infection in coyotes in the southwestern United States. We identified multiple coyote populations in Arizona and New Mexico as probable reservoirs for this species.


Subject(s)
Coyotes , Dog Diseases , Onchocerciasis , Animals , Arizona/epidemiology , Disease Reservoirs , Dog Diseases/epidemiology , Dogs , New Mexico , Onchocerca/genetics , Onchocerciasis/epidemiology , Onchocerciasis/veterinary , Southwestern United States , United States/epidemiology , Zoonoses
2.
Front Public Health ; 8: 451, 2020.
Article in English | MEDLINE | ID: mdl-33014966

ABSTRACT

Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is becoming a serious public health threat. While some mechanisms of AMR have been reported, understanding novel mechanisms of resistance is critical for identifying emerging resistance. One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype association studies; however, performing these studies is complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR mechanisms failed to identify clear correlations for most drugs. We then performed a bacterial genome wide association study (bGWAS) looking for associations between all possible 21-mers; this approach generally failed to identify mechanisms that explained the resistance phenotype. In order to decrease the genomic noise associated with population stratification, we compared four phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing (RNA-Seq) was performed on paired isolates and differentially-expressed genes were identified. In these isolate pairs, five different potential mechanisms were identified, highlighting the difficulty of broad AMR surveillance in this species. To verify and validate differential expression, amplicon sequencing was performed. These results suggest that a diagnostic platform based on gene expression rather than genomics alone may be beneficial in certain surveillance efforts. The implementation of such advanced diagnostics coupled with increased AMR surveillance will potentially improve A. baumannii infection treatment and patient outcomes.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Arizona , Drug Resistance, Bacterial/genetics , Genome-Wide Association Study , Humans , Transcriptome
3.
mBio ; 10(1)2019 01 22.
Article in English | MEDLINE | ID: mdl-30670612

ABSTRACT

Enteroviruses are a common cause of respiratory and gastrointestinal illness, and multiple subtypes, including poliovirus, can cause neurologic disease. In recent years, enterovirus D68 (EV-D68) has been associated with serious neurologic illnesses, including acute flaccid myelitis (AFM), frequently preceded by respiratory disease. A cluster of 11 suspect cases of pediatric AFM was identified in September 2016 in Phoenix, AZ. To determine if these cases were associated with EV-D68, we performed multiple genomic analyses of nasopharyngeal (NP) swabs and cerebrospinal fluid (CSF) material from the patients, including real-time PCR and amplicon sequencing targeting the EV-D68 VP1 gene and unbiased microbiome and metagenomic sequencing. Four of the 11 patients were classified as confirmed cases of AFM, and an additional case was classified as probable AFM. Real-time PCR and amplicon sequencing detected EV-D68 virus RNA in the three AFM patients from which NP swabs were collected, as well as in a fourth patient diagnosed with acute disseminated encephalomyelitis, a disease that commonly follows bacterial or viral infections, including enterovirus. No other obvious etiological causes for AFM were identified by 16S or RNA and DNA metagenomic sequencing in these cases, strengthening the likelihood that EV-D68 is an etiological factor. Herpes simplex viral DNA was detected in the CSF of the fourth case of AFM and in one additional suspect case from the cluster. Multiple genomic techniques, such as those described here, can be used to diagnose patients with suspected EV-D68 respiratory illness, to aid in AFM diagnosis, and for future EV-D68 surveillance and epidemiology.IMPORTANCE Enteroviruses frequently result in respiratory and gastrointestinal illness; however, multiple subtypes, including poliovirus, can cause severe neurologic disease. Recent biennial increases (i.e., 2014, 2016, and 2018) in cases of non-polio acute flaccid paralysis have led to speculations that other enteroviruses, specifically enterovirus D68 (EV-D68), are emerging to fill the niche that was left from poliovirus eradication. A cluster of 11 suspect cases of pediatric acute flaccid myelitis (AFM) was identified in 2016 in Phoenix, AZ. Multiple genomic analyses identified the presence of EV-D68 in the majority of clinical AFM cases. Beyond limited detection of herpesvirus, no other likely etiologies were found in the cluster. These findings strengthen the likelihood that EV-D68 is a cause of AFM and show that the rapid molecular assays developed for this study are useful for investigations of AFM and EV-D68.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Cluster Analysis , Enterovirus D, Human/classification , Enterovirus D, Human/isolation & purification , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Phylogeny , Arizona/epidemiology , Cerebrospinal Fluid/virology , Enterovirus D, Human/genetics , Humans , Molecular Epidemiology , Nasopharynx/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL