Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
NPJ Breast Cancer ; 10(1): 57, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003306

ABSTRACT

Germline mutations in BRCA1 and BRCA2 (gBRCA1/2) are required for a PARP inhibitor therapy in patients with HER2-negative (HER2-) advanced breast cancer (aBC). However, little is known about the prognostic impact of gBRCA1/2 mutations in aBC patients treated with chemotherapy. This study aimed to investigate the frequencies and prognosis of germline and somatic BRCA1/2 mutations in HER2- aBC patients receiving the first chemotherapy in the advanced setting. Patients receiving their first chemotherapy for HER2- aBC were retrospectively selected from the prospective PRAEGNANT registry (NCT02338167). Genotyping of 26 cancer predisposition genes was performed with germline DNA of 471 patients and somatic tumor DNA of 94 patients. Mutation frequencies, progression-free and overall survival (PFS, OS) according to germline mutation status were assessed. gBRCA1/2 mutations were present in 23 patients (4.9%), and 33 patients (7.0%) had mutations in other cancer risk genes. Patients with a gBRCA1/2 mutation had a better OS compared to non-mutation carriers (HR: 0.38; 95%CI: 0.17-0.86). PFS comparison was not statistically significant. Mutations in other risk genes did not affect prognosis. Two somatic BRCA2 mutations were found in 94 patients without gBRCA1/2 mutations. Most frequently somatic mutated genes were TP53 (44.7%), CDH1 (10.6%) and PTEN (6.4%). In conclusion, aBC patients with gBRCA1/2 mutations had a more favorable prognosis under chemotherapy compared to non-mutation carriers. The mutation frequency of ~5% with gBRCA1/2 mutations together with improved outcome indicates that germline genotyping of all metastatic patients for whom a PARP inhibitor therapy is indicated should be considered.

2.
Arch Pathol Lab Med ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871349

ABSTRACT

CONTEXT.­: Computational pathology combines clinical pathology with computational analysis, aiming to enhance diagnostic capabilities and improve clinical productivity. However, communication barriers between pathologists and developers often hinder the full realization of this potential. OBJECTIVE.­: To propose a standardized framework that improves mutual understanding of clinical objectives and computational methodologies. The goal is to enhance the development and application of computer-aided diagnostic (CAD) tools. DESIGN.­: The article suggests pivotal roles for pathologists and computer scientists in the CAD development process. It calls for increased understanding of computational terminologies, processes, and limitations among pathologists. Similarly, it argues that computer scientists should better comprehend the true use cases of the developed algorithms to avoid clinically meaningless metrics. RESULTS.­: CAD tools improve pathology practice significantly. Some tools have even received US Food and Drug Administration approval. However, improved understanding of machine learning models among pathologists is essential to prevent misuse and misinterpretation. There is also a need for a more accurate representation of the algorithms' performance compared to that of pathologists. CONCLUSIONS.­: A comprehensive understanding of computational and clinical paradigms is crucial for overcoming the translational gap in computational pathology. This mutual comprehension will improve patient care through more accurate and efficient disease diagnosis.

3.
Arch Pathol Lab Med ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649149

ABSTRACT

CONTEXT.­: Artificial intelligence is a transforming technology for anatomic pathology. Involvement within the workforce will foster support for algorithm development and implementation. OBJECTIVE.­: To develop a supportive ecosystem that enables pathologists with variable expertise in artificial intelligence to create algorithms in a development environment with seamless transition to a production environment. RESULTS.­: The development team considered internal development and vended solutions. Because of the extended timeline and resource requirements for internal development, a decision was made to use a vended solution. Vendor proposals were solicited and reviewed by pathologists, IT, and security groups. A vendor was selected and pipelines for development and production were established. Proposals for development were solicited from the pathology department. Eighty-four investigators were selected for the initial cohort, receiving training and access to dedicated subject matter experts. A total of 30 of 31 projects progressed through the model development process of annotating, training, and validation. Based on these projects, 15 abstracts were submitted to national meetings. CONCLUSIONS.­: Democratizing artificial intelligence by creating an ecosystem to support pathologists with varying levels of expertise can break down entry barriers, reduce overall cost of algorithm development, improve algorithm quality, and enhance the speed of adoption.

4.
Cancer Res Commun ; 3(12): 2544-2550, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38014910

ABSTRACT

Prostate cancer risk is influenced by rare and common germline variants. We examined the aggregate association of rare germline pathogenic/likely pathogenic/deleterious (P/LP/D) variants in ATM, BRCA2, PALB2, and NBN with a polygenic risk score (PRS) on prostate cancer risk among 1,796 prostate cancer cases (222 metastatic) and 1,424 controls of African ancestry. Relative to P/LP/D non-carriers at average genetic risk (33%-66% of PRS), men with low (0%-33%) and high (66%-100%) PRS had Odds Ratios (ORs) for overall prostate cancer of 2.08 [95% confidence interval (CI) = 0.58-7.49] and 18.06 (95% CI = 4.24-76.84) among P/LP/D carriers and 0.57 (95% CI = 0.46-0.71) and 3.02 (95% CI = 2.53-3.60) among non-carriers, respectively. The OR for metastatic prostate cancer was 2.73 (95% CI = 0.24-30.54) and 28.99 (95% CI = 4.39-191.43) among P/LP/D carriers and 0.54 (95% CI = 0.31-0.95) and 3.22 (95% CI = 2.20-4.73) among non-carriers, for men with low and high PRS, respectively. Lifetime absolute risks of overall prostate cancer increased with PRS (low to high) from 9.8% to 51.5% in P/LP/D carriers and 5.5% to 23.9% in non-carriers. Lifetime absolute risks of metastatic prostate cancer increased with PRS from 1.9% to 18.1% in P/LP/D carriers and 0.3% to 2.2% in non-carriers These findings suggest that assessment of prostate cancer risk for rare variant carriers should include PRS status. SIGNIFICANCE: These findings highlight the importance of considering rare and common variants to comprehensively assess prostate cancer risk in men of African ancestry.


Subject(s)
Genetic Risk Score , Prostatic Neoplasms , Male , Humans , Genetic Predisposition to Disease/genetics , Risk Factors , Prostatic Neoplasms/genetics , Germ-Line Mutation
5.
J Pathol Inform ; 14: 100338, 2023.
Article in English | MEDLINE | ID: mdl-37860713

ABSTRACT

In this paper, we consider the current and potential role of the latest generation of Large Language Models (LLMs) in medical informatics, particularly within the realms of clinical and anatomic pathology. We aim to provide a thorough understanding of the considerations that arise when employing LLMs in healthcare settings, such as determining appropriate use cases and evaluating the advantages and limitations of these models. Furthermore, this paper will consider the infrastructural and organizational requirements necessary for the successful implementation and utilization of LLMs in healthcare environments. We will discuss the importance of addressing education, security, bias, and privacy concerns associated with LLMs in clinical informatics, as well as the need for a robust framework to overcome regulatory, compliance, and legal challenges.

6.
J Pathol ; 260(5): 514-532, 2023 08.
Article in English | MEDLINE | ID: mdl-37608771

ABSTRACT

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Humans , Biomarkers , Benchmarking , Lymphocytes, Tumor-Infiltrating , Spatial Analysis , Tumor Microenvironment
7.
J Pathol ; 260(5): 498-513, 2023 08.
Article in English | MEDLINE | ID: mdl-37608772

ABSTRACT

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Humans , Animals , Lymphocytes, Tumor-Infiltrating , Biomarkers , Machine Learning
8.
Endocr Oncol ; 3(1): e220093, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-37434649

ABSTRACT

Mutations that predispose to familial pheochromocytoma and paraganglioma include inherited variants in the four genes (SDHA, SDHB, SDHC and SDHD) encoding subunits of succinate dehydrogenase (SDH), an enzyme of the mitochondrial tricarboxylic acid cycle and complex II of the electron transport chain. In heterozygous variant carriers, somatic loss of heterozygosity is thought to result in tumorigenic accumulation of succinate and reactive oxygen species. Inexplicably, variants affecting the SDHB subunit predict worse clinical outcomes. Why? Here we consider two hypotheses. First, relative to SDH A, C and D subunits, the small SDHB subunit might be more intrinsically 'fragile' to missense mutations because of its relatively large fraction of amino acids contacting prosthetic groups and other SDH subunits. We show evidence that supports this hypothesis. Second, the natural pool of human SDHB variants might, by chance, be biased toward severe truncating variants and missense variants causing more disruptive amino acid substitutions. We tested this hypothesis by creating a database of known SDH variants and predicting their biochemical severities. Our data suggest that natural SDHB variants are more pathogenic. It is unclear if this bias is sufficient to explain clinical data. Other explanations include the possibility that SDH subcomplexes remaining after SDHB loss have unique tumorigenic gain-of-function characteristics, and/or that SDHB may have additional unknown tumor-suppressor functions.

9.
Cancer Res ; 83(15): 2557-2571, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37253112

ABSTRACT

Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region. The deleterious variants conferred sensitivity to cisplatin and olaparib and disrupted formation of RAD51C/XRCC3 and RAD51B/RAD51C/RAD51D/XRCC2 complexes. Computational analysis indicated the deleterious variant effects were consistent with structural effects on ATP-binding to RAD51C. A subset of the variants displayed similar effects on RAD51C activity in reconstituted human RAD51C-depleted cancer cells. Case-control association studies of deleterious variants in women with breast and ovarian cancer and noncancer controls showed associations with moderate breast cancer risk [OR, 3.92; 95% confidence interval (95% CI), 2.18-7.59] and high ovarian cancer risk (OR, 14.8; 95% CI, 7.71-30.36), similar to protein-truncating variants. This functional data supports the clinical classification of inactivating RAD51C missense variants as pathogenic or likely pathogenic, which may improve the clinical management of variant carriers. SIGNIFICANCE: Functional analysis of the impact of a large number of missense variants on RAD51C function provides insight into RAD51C activity and information for classification of the cancer relevance of RAD51C variants.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Ovarian Neoplasms , Female , Humans , Adenosine Triphosphate , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Mutation, Missense , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
10.
J Clin Oncol ; 41(9): 1703-1713, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36623243

ABSTRACT

PURPOSE: To estimate the risk of contralateral breast cancer (CBC) among women with germline pathogenic variants (PVs) in ATM, BRCA1, BRCA2, CHEK2, and PALB2. METHODS: The study population included 15,104 prospectively followed women within the CARRIERS study treated with ipsilateral surgery for invasive breast cancer. The risk of CBC was estimated for PV carriers in each gene compared with women without PVs in a multivariate proportional hazard regression analysis accounting for the competing risk of death and adjusting for patient and tumor characteristics. The primary analyses focused on the overall cohort and on women from the general population. Secondary analyses examined associations by race/ethnicity, age at primary breast cancer diagnosis, menopausal status, and tumor estrogen receptor (ER) status. RESULTS: Germline BRCA1, BRCA2, and CHEK2 PV carriers with breast cancer were at significantly elevated risk (hazard ratio > 1.9) of CBC, whereas only the PALB2 PV carriers with ER-negative breast cancer had elevated risks (hazard ratio, 2.9). By contrast, ATM PV carriers did not have significantly increased CBC risks. African American PV carriers had similarly elevated risks of CBC as non-Hispanic White PV carriers. Among premenopausal women, the 10-year cumulative incidence of CBC was estimated to be 33% for BRCA1, 27% for BRCA2, and 13% for CHEK2 PV carriers with breast cancer and 35% for PALB2 PV carriers with ER-negative breast cancer. The 10-year cumulative incidence of CBC among postmenopausal PV carriers was 12% for BRCA1, 9% for BRCA2, and 4% for CHEK2. CONCLUSION: Women diagnosed with breast cancer and known to carry germline PVs in BRCA1, BRCA2, CHEK2, or PALB2 are at substantially increased risk of CBC and may benefit from enhanced surveillance and risk reduction strategies.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Black or African American/genetics , Black or African American/statistics & numerical data , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Checkpoint Kinase 2/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Genes, BRCA2 , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Heterozygote , White/genetics , White/statistics & numerical data
11.
J Appl Lab Med ; 8(1): 145-161, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36610432

ABSTRACT

BACKGROUND: Network-connected medical devices have rapidly proliferated in the wake of recent global catalysts, leaving clinical laboratories and healthcare organizations vulnerable to malicious actors seeking to ransom sensitive healthcare information. As organizations become increasingly dependent on integrated systems and data-driven patient care operations, a sudden cyberattack and the associated downtime can have a devastating impact on patient care and the institution as a whole. Cybersecurity, information security, and information assurance principles are, therefore, vital for clinical laboratories to fully prepare for what has now become inevitable, future cyberattacks. CONTENT: This review aims to provide a basic understanding of cybersecurity, information security, and information assurance principles as they relate to healthcare and the clinical laboratories. Common cybersecurity risks and threats are defined in addition to current proactive and reactive cybersecurity controls. Information assurance strategies are reviewed, including traditional castle-and-moat and zero-trust security models. Finally, ways in which clinical laboratories can prepare for an eventual cyberattack with extended downtime are discussed. SUMMARY: The future of healthcare is intimately tied to technology, interoperability, and data to deliver the highest quality of patient care. Understanding cybersecurity and information assurance is just the first preparative step for clinical laboratories as they ensure the protection of patient data and the continuity of their operations.


Subject(s)
Clinical Laboratory Services , Laboratories, Clinical , Humans , Delivery of Health Care , Computer Security
12.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168194

ABSTRACT

Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary: Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.

13.
Cancer Res ; 82(18): 3201-3208, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35834270

ABSTRACT

Women who have had breast cancer in the past are at increased risk of developing a second primary cancer (SPC), including second primary breast cancer (SPBC) or a second primary non-breast cancer (SPNBC). In the Multiethnic Cohort (MEC) Study, we conducted a prospective cohort analysis in 3,223 female breast cancer survivors from five racial/ethnic populations (White, African American, Japanese American, Latino, and Native Hawaiian) to assess the association of rare pathogenic variants (PV) in 37 known cancer predisposition genes with risk of SPC. A total of 719 (22.3%) women developed SPC, of which, 323 (10.0%) were SPBC. Germline PVs in BRCA1 (HR, 2.28; 95% CI, 1.11-4.65) and ERCC2 (HR, 3.51; 95% CI, 1.29-9.54) were significantly enriched in women with SPC. In the subtype analysis for SPBC, a significant association of ERCC2 PVs (HR, 5.09; 95% CI, 1.58-16.4) and a suggestive association of BRCA2 PVs (HR, 2.24; 95% CI, 0.91-5.55) were observed. There was also a higher risk of SPNBC in carriers of BRCA1 PVs (HR, 2.98; 95% CI, 1.21-7.36). These results provide evidence that germline PVs in BRCA1, BRCA2, and ERCC2 contribute to the development of SPC in breast cancer survivors. These findings also suggest that compromised DNA repair mechanisms could be a predisposition factor for SPC in patients with breast cancer, supporting the need for closer monitoring of SPC in women carrying PVs in these genes. SIGNIFICANCE: This multiethnic study links germline pathogenic variants in BRCA1, BRCA2, and ERCC2 to the development of second primary cancer in breast cancer survivors, providing biological insights and biomarkers to guide patient monitoring.


Subject(s)
Breast Neoplasms , Cancer Survivors , Neoplasms, Second Primary , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cohort Studies , Female , Genes, BRCA1 , Genetic Predisposition to Disease , Humans , Male , Neoplasms, Second Primary/genetics , Prospective Studies , Xeroderma Pigmentosum Group D Protein/genetics
14.
NPJ Genom Med ; 7(1): 35, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35665744

ABSTRACT

Loss-of-function variants in the BRCA1 and BRCA2 susceptibility genes predispose carriers to breast and/or ovarian cancer. The use of germline testing panels containing these genes has grown dramatically, but the interpretation of the results has been complicated by the identification of many sequence variants of undefined cancer relevance, termed "Variants of Uncertain Significance (VUS)." We have developed functional assays and a statistical model called VarCall for classifying BRCA1 and BRCA2 VUS. Here we describe a multifactorial extension of VarCall, called VarCall XT, that allows for co-analysis of multiple forms of genetic evidence. We evaluated the accuracy of models defined by the combinations of functional, in silico protein predictors, and family data for VUS classification. VarCall XT classified variants of known pathogenicity status with high sensitivity and specificity, with the functional assays contributing the greatest predictive power. This approach could be used to identify more patients that would benefit from personalized cancer risk assessment and management.

15.
Clin Cancer Res ; 28(17): 3742-3751, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35736817

ABSTRACT

PURPOSE: The identification of variants of uncertain significance (VUS) in the BRCA1 and BRCA2 genes by hereditary cancer testing poses great challenges for the clinical management of variant carriers. The ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) variant classification framework, which incorporates multiple sources of evidence, has the potential to establish the clinical relevance of many VUS. We sought to classify the clinical relevance of 133 single-nucleotide substitution variants encoding missense variants in the DNA-binding domain (DBD) of BRCA2 by incorporating results from a validated functional assay into an ACMG/AMP-variant classification model from a hereditary cancer-testing laboratory. EXPERIMENTAL DESIGN: The 133 selected VUS were evaluated using a validated homology-directed double-strand DNA break repair (HDR) functional assay. Results were combined with clinical and genetic data from variant carriers in a rules-based variant classification model for BRCA2. RESULTS: Of 133 missense variants, 44 were designated as non-functional and 89 were designated as functional in the HDR assay. When combined with genetic and clinical information from a single diagnostic laboratory in an ACMG/AMP-variant classification framework, 66 variants previously classified by the diagnostic laboratory were correctly classified, and 62 of 67 VUS (92.5%) were reclassified as likely pathogenic (n = 22) or likely benign (n = 40). In total, 44 variants were classified as pathogenic/likely pathogenic, 84 as benign/likely benign, and 5 remained as VUS. CONCLUSIONS: Incorporation of HDR functional analysis into an ACMG/AMP framework model substantially improves BRCA2 VUS re-classification and provides an important tool for determining the clinical relevance of individual BRCA2 VUS.


Subject(s)
Breast Neoplasms , Genes, BRCA2 , Female , Humans , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Variation
16.
Nat Commun ; 13(1): 514, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082299

ABSTRACT

The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Neoplasm Metastasis , Adult , Breast , Female , Gene Regulatory Networks , Genes, p53/genetics , Humans , Middle Aged , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcriptome
17.
J Pathol Inform ; 12: 45, 2021.
Article in English | MEDLINE | ID: mdl-34881099

ABSTRACT

PURPOSE: Validating artificial intelligence algorithms for clinical use in medical images is a challenging endeavor due to a lack of standard reference data (ground truth). This topic typically occupies a small portion of the discussion in research papers since most of the efforts are focused on developing novel algorithms. In this work, we present a collaboration to create a validation dataset of pathologist annotations for algorithms that process whole slide images. We focus on data collection and evaluation of algorithm performance in the context of estimating the density of stromal tumor-infiltrating lymphocytes (sTILs) in breast cancer. METHODS: We digitized 64 glass slides of hematoxylin- and eosin-stained invasive ductal carcinoma core biopsies prepared at a single clinical site. A collaborating pathologist selected 10 regions of interest (ROIs) per slide for evaluation. We created training materials and workflows to crowdsource pathologist image annotations on two modes: an optical microscope and two digital platforms. The microscope platform allows the same ROIs to be evaluated in both modes. The workflows collect the ROI type, a decision on whether the ROI is appropriate for estimating the density of sTILs, and if appropriate, the sTIL density value for that ROI. RESULTS: In total, 19 pathologists made 1645 ROI evaluations during a data collection event and the following 2 weeks. The pilot study yielded an abundant number of cases with nominal sTIL infiltration. Furthermore, we found that the sTIL densities are correlated within a case, and there is notable pathologist variability. Consequently, we outline plans to improve our ROI and case sampling methods. We also outline statistical methods to account for ROI correlations within a case and pathologist variability when validating an algorithm. CONCLUSION: We have built workflows for efficient data collection and tested them in a pilot study. As we prepare for pivotal studies, we will investigate methods to use the dataset as an external validation tool for algorithms. We will also consider what it will take for the dataset to be fit for a regulatory purpose: study size, patient population, and pathologist training and qualifications. To this end, we will elicit feedback from the Food and Drug Administration via the Medical Device Development Tool program and from the broader digital pathology and AI community. Ultimately, we intend to share the dataset, statistical methods, and lessons learned.

18.
Sci Rep ; 11(1): 21680, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737383

ABSTRACT

The changing landscape of genomics research and clinical practice has created a need for computational pipelines capable of efficiently orchestrating complex analysis stages while handling large volumes of data across heterogeneous computational environments. Workflow Management Systems (WfMSs) are the software components employed to fill this gap. This work provides an approach and systematic evaluation of key features of popular bioinformatics WfMSs in use today: Nextflow, CWL, and WDL and some of their executors, along with Swift/T, a workflow manager commonly used in high-scale physics applications. We employed two use cases: a variant-calling genomic pipeline and a scalability-testing framework, where both were run locally, on an HPC cluster, and in the cloud. This allowed for evaluation of those four WfMSs in terms of language expressiveness, modularity, scalability, robustness, reproducibility, interoperability, ease of development, along with adoption and usage in research labs and healthcare settings. This article is trying to answer, which WfMS should be chosen for a given bioinformatics application regardless of analysis type?. The choice of a given WfMS is a function of both its intrinsic language and engine features. Within bioinformatics, where analysts are a mix of dry and wet lab scientists, the choice is also governed by collaborations and adoption within large consortia and technical support provided by the WfMS team/community. As the community and its needs continue to evolve along with computational infrastructure, WfMSs will also evolve, especially those with permissive licenses that allow commercial use. In much the same way as the dataflow paradigm and containerization are now well understood to be very useful in bioinformatics applications, we will continue to see innovations of tools and utilities for other purposes, like big data technologies, interoperability, and provenance.


Subject(s)
Computational Biology/methods , Software , Workflow , Big Data , Genomics , Humans , Reproducibility of Results
19.
J Clin Oncol ; 39(35): 3918-3926, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34672684

ABSTRACT

PURPOSE: To determine the contribution of germline pathogenic variants (PVs) in hereditary cancer testing panel genes to invasive lobular carcinoma (ILC) of the breast. MATERIALS AND METHODS: The study included 2,999 women with ILC from a population-based cohort and 3,796 women with ILC undergoing clinical multigene panel testing (clinical cohort). Frequencies of germline PVs in breast cancer predisposition genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected female controls and between women with ILC and infiltrating ductal carcinoma (IDC). RESULTS: The frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analysis, CDH1 and BRCA2 PVs were associated with high risks of ILC (odds ratio [OR] > 4) and CHEK2, ATM, and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. Compared with IDC, CDH1 PVs were > 10-fold enriched, whereas PVs in BRCA1 were substantially reduced in ILC. CONCLUSION: The study establishes that PVs in ATM, BRCA2, CDH1, CHEK2, and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. Similar to IDC, multigene panel testing may be appropriate for women with ILC, but CDH1 should be specifically discussed because of low prevalence and gastric cancer risk.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Genetic Predisposition to Disease , Genetic Testing/methods , Germ-Line Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Lobular/genetics , Case-Control Studies , Female , Follow-Up Studies , Humans , Middle Aged , Prognosis , Young Adult
20.
J Pathol Inform ; 12: 21, 2021.
Article in English | MEDLINE | ID: mdl-34267986

ABSTRACT

BACKGROUND: Adoption of the Digital Imaging and Communications in Medicine (DICOM) standard for whole slide images (WSIs) has been slow, despite significant time and effort by standards curators. One reason for the lack of adoption is that there are few tools which exist that can meet the requirements of WSIs, given an evolving ecosystem of best practices for implementation. Eventually, vendors will conform to the specification to ensure enterprise interoperability, but what about archived slides? Millions of slides have been scanned in various proprietary formats, many with examples of rare histologies. Our hypothesis is that if users and developers had access to easy to use tools for migrating proprietary formats to the open DICOM standard, then more tools would be developed as DICOM first implementations. METHODS: The technology we present here is dicom_wsi, a Python based toolkit for converting any slide capable of being read by the OpenSlide library into DICOM conformant and validated implementations. Moreover, additional postprocessing such as background removal, digital transformations (e.g., ink removal), and annotation storage are also described. dicom_wsi is a free and open source implementation that anyone can use or modify to meet their specific purposes. RESULTS: We compare the output of dicom_wsi to two other existing implementations of WSI to DICOM converters and also validate the images using DICOM capable image viewers. CONCLUSION: dicom_wsi represents the first step in a long process of DICOM adoption for WSI. It is the first open source implementation released in the developer friendly Python programming language and can be freely downloaded at .

SELECTION OF CITATIONS
SEARCH DETAIL
...