Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939689

ABSTRACT

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Subject(s)
Bunyaviridae Infections , Low Density Lipoprotein Receptor-Related Protein-1 , Orthobunyavirus , Virus Internalization , Animals , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Gene Knockout Techniques , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Orthobunyavirus/physiology , South America
2.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Article in English | MEDLINE | ID: mdl-35696423

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Animals , Central Nervous System , Encephalitis Virus, Venezuelan Equine/genetics , Horses/genetics , Inflammation , Macaca fascicularis , RNA, Viral/genetics
3.
Viruses ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36680046

ABSTRACT

The Department of Defense recently began an effort to improve and standardize virus challenge materials and efficacy determination strategies for testing therapeutics and vaccines. This includes stabilization of virus genome sequences in cDNA form where appropriate, use of human-derived virus isolates, and noninvasive strategies for determination of challenge virus replication. Eventually, it is desired that these approaches will satisfy the FDA "Animal Rule" for licensure, which substitutes animal efficacy data when human data are unlikely to be available. To this end, we created and examined the virulence phenotype of cDNA clones of prototypic human infection-derived strains of the alphaviruses, Venezuelan (VEEV INH9813), eastern (EEEV V105) and western (WEEV Fleming) equine encephalitis viruses, and created fluorescent and luminescent reporter expression vectors for evaluation of replication characteristics in vitro and in vivo. Sequences of minimally passaged isolates of each virus were used to synthesize full-length cDNA clones along with a T7 transcription promoter-based bacterial propagation vector. Viruses generated from the cDNA clones were compared with other "wild type" strains derived from cDNA clones and GenBank sequences to identify and eliminate putative tissue culture artifacts accumulated in the cell passaged biological stocks. This was followed by examination of aerosol and subcutaneous infection and disease in mouse models. A mutation that increased heparan sulfate binding was identified in the VEEV INH9813 biological isolate sequence and eliminated from the cDNA clone. Viruses derived from the new human isolate cDNA clones showed similar mouse virulence to existing clone-derived viruses after aerosol or subcutaneous inoculation.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalitis Virus, Western Equine , United States , Humans , Animals , Horses , Mice , DNA, Complementary/genetics , Phenotype , Clone Cells
SELECTION OF CITATIONS
SEARCH DETAIL