Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 99: 104916, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101297

ABSTRACT

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Animals , Mice , Virulence , Epithelial Cells , Nasal Mucosa
2.
ChemMedChem ; 18(10): e202200541, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36792530

ABSTRACT

The Enterovirus (EV) genus includes several important human and animal pathogens. EV-A71, EV-D68, poliovirus (PV), and coxsackievirus (CV) outbreaks have affected millions worldwide, causing a range of upper respiratory, skin, and neuromuscular diseases, including acute flaccid myelitis, and hand-foot-and-mouth disease. There are no FDA-approved antiviral therapeutics for these enteroviruses. This study describes novel antiviral compounds targeting the conserved non-structural viral protein 2C with low micromolar to nanomolar IC50 values. The selection of resistant mutants resulted in amino acid substitutions in the viral capsid protein, implying these compounds may play a role in inhibiting the interaction of 2C and the capsid protein. The assembly and encapsidation stages of the viral life cycle still need to be fully understood, and the inhibitors reported here could be useful probes in understanding these processes.


Subject(s)
Enterovirus Infections , Enterovirus , Neuromuscular Diseases , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Capsid Proteins/metabolism , Enterovirus Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...