Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256203

ABSTRACT

The clinical utility of the chemotherapeutic agent cisplatin is restricted by cancer drug resistance, which is either intrinsic to the tumor or acquired during therapy. Epigenetics is increasingly recognized as a factor contributing to cisplatin resistance and hence influences drug efficacy and clinical outcomes. In particular, epigenetics regulates gene expression without changing the DNA sequence. Common types of epigenetic modifications linked to chemoresistance are DNA methylation, histone modification, and non-coding RNAs. This review provides an overview of the current findings of various epigenetic modifications related to cisplatin efficacy in cell lines in vitro and in clinical tumor samples. Furthermore, it discusses whether epigenetic alterations might be used as predictors of the platinum agent response in order to prevent avoidable side effects in patients with resistant malignancies. In addition, epigenetic targeting therapies are described as a possible strategy to render cancer cells more susceptible to platinum drugs.


Subject(s)
Cisplatin , Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Platinum , Epigenesis, Genetic , DNA Methylation , Neoplasms/drug therapy , Neoplasms/genetics
2.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894918

ABSTRACT

Millions of people around the world are exposed to elevated levels of arsenic through food or drinking water. Epidemiological studies have linked chronic arsenic exposure to an increased risk of several cancers, cardiovascular disease, central nervous system neuropathies, and genotoxic as well as immunotoxic effects. In addition to the induction of oxidative stress and inhibition of DNA repair processes, epigenetic effects, including altered DNA methylation patterns resulting in aberrant gene expression, may contribute to carcinogenicity. However, the underlying mechanisms by which chronic micromolar concentrations of arsenite affect the methylation status of DNA are not fully understood. In this study, human HepG2 hepatocarcinoma cells were treated with 0.5-10 µM sodium arsenite for 24 h, 10, or 20 days. During these periods, the effects on global DNA methylation, cell cycle phase distribution, and gene expression were investigated. While no impact on DNA methylation was seen after short-term exposure, global hypomethylation was observed at both long-term exposure periods, with concomitant induction of the DNA methyltransferase genes DNMT1 and DNMT3B, while DNMT3A was slightly down-regulated. Pronounced time- and concentration-dependent effects were also seen in the case of genes involved in DNA damage response and repair, inflammation, oxidative stress response, and metal homeostasis. These results suggest that chronic low-dose arsenite exposure can lead to global hypomethylation. As an underlying mechanism, the consistent down-regulation of DNA methyltransferase genes could be excluded; alternatively, interactions at the protein level could play an important role.


Subject(s)
Arsenic , Arsenites , Liver Neoplasms , Humans , DNA Methylation , Arsenites/toxicity , Arsenic/toxicity , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Liver Neoplasms/genetics , DNA/metabolism , Gene Expression
3.
Environ Int ; 179: 108169, 2023 09.
Article in English | MEDLINE | ID: mdl-37688811

ABSTRACT

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Gases , Humans , Wood , Respiratory Aerosols and Droplets , Aldehydes , Particulate Matter/toxicity , Smoke/adverse effects
4.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762697

ABSTRACT

BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic arsenic, which is indirectly genotoxic via induction of oxidative stress and inhibition of DNA repair pathways. In the present study, we investigated the effect of NaAsO2 on the transcriptional and functional DDR. Particular attention was paid to the potential impairment of BRCA1-mediated DDR mechanisms by arsenite by comparing BRCA1-deficient and -proficient cells. At the transcriptional level, arsenite itself activated several DDR mechanisms, including a pronounced oxidative stress and DNA damage response, mostly independent of BRCA1 status. However, at the functional level, a clear BRCA1 dependency was observed in both cell cycle regulation and cell death mechanisms after arsenite exposure. Furthermore, in the absence of arsenite, the lack of functional BRCA1 impaired the largely error-free homologous recombination (HR), leading to a shift towards the error-prone non-homologous end-joining (NHEJ). Arsenic treatment also induced this shift in BRCA1-proficient cells, indicating BRCA1 inactivation. Although BRCA1 bound to DNA DSBs induced via ionizing radiation, its dissociation was impaired, similarly to the downstream proteins RAD51 and RAD54. A shift from HR to NHEJ by arsenite was further supported by corresponding reporter gene assays. Taken together, arsenite appears to negatively affect HR via functional inactivation of BRCA1, possibly by interacting with its RING finger structure, which may compromise genomic stability.


Subject(s)
Arsenic , Arsenites , Humans , DNA Breaks, Double-Stranded , Arsenites/toxicity , DNA , DNA Repair , Genomic Instability , BRCA1 Protein/genetics
5.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373538

ABSTRACT

Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case of chromate, but also interactions with DNA repair systems in both cases. However, the impact of manganese and chromate on DNA double-strand break (DSB) repair pathways is largely unknown. In the present study, we examined the induction of DSB as well as the effect on specific DNA DSB repair mechanisms, namely homologous recombination (HR), non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ). We applied DSB repair pathway-specific reporter cell lines, pulsed field gel electrophoresis as well as gene expression analysis, and investigated the binding of specific DNA repair proteins via immunoflourescence. While manganese did not seem to induce DNA DSB and had no impact on NHEJ and MMEJ, HR and SSA were inhibited. In the case of chromate, the induction of DSB was further supported. Regarding DSB repair, no inhibition was seen in the case of NHEJ and SSA, but HR was diminished and MMEJ was activated in a pronounced manner. The results indicate a specific inhibition of error-free HR by manganese and chromate, with a shift towards error-prone DSB repair mechanisms in both cases. These observations suggest the induction of genomic instability and may explain the microsatellite instability involved in chromate-induced carcinogenicity.


Subject(s)
Chromates , Manganese , Humans , Manganese/toxicity , Chromates/toxicity , DNA Breaks, Double-Stranded , DNA Repair , DNA End-Joining Repair , DNA/metabolism
6.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177055

ABSTRACT

The increasing use of nanomaterials in almost every area of our daily life renders toxicological risk assessment a major requirement for their safe handling [...].

7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768249

ABSTRACT

In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air-liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials.


Subject(s)
Asbestos , Nanotubes, Carbon , Humans , Carbon Fiber , Nanotubes, Carbon/toxicity , Lung/metabolism , Asbestos/toxicity , Cell Culture Techniques
8.
Metallomics ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36583699

ABSTRACT

Mammalian metallothioneins (MTs) are important proteins in Zn(II) and Cu(I) homeostasis with the Zn(II) and Cu(I) binding to the 20 cysteines in metal-thiolate clusters. Previous electrospray ionization (ESI) mass spectrometric (MS) analyses of Cu(I) binding to Zn7-MT were complicated by significant overlap of the natural abundance isotopic patterns for Zn(II) and Cu(I) leading to impossibly ambiguous stoichiometries. In this paper, isotopically pure 63Cu(I) and 68Zn(II) allowed determination of the specific stoichiometries in the 68 Zn,63Cu-ßα MT1A species formed following the stepwise addition of 63Cu(I) to 68Zn7-ßα MT1A. These species were characterized by ESI-MS and room temperature emission spectroscopy. The key species that form and their emission band centres are Zn5Cu5-ßα MT1A (λ = 684 nm), Zn4Cu6-ßα MT1A (λ = 750 nm), Zn3Cu9-ßα MT1A (λ = 750 nm), Zn2Cu10-ßα MT1A (λ = 750 nm), and Zn1Cu14-ßα MT1A (λ = 634 nm). The specific domain stoichiometry of each species was determined by assessing the species forming following 63Cu(I) addition to the 68Zn3-ß MT1A and 68Zn4-α MT1A domain fragments. The domain fragment emission suggests that Zn5Cu5-ßα MT1A contains a Zn1Cu5-ß cluster and the Zn4Cu6-ßα MT1A, Zn3Cu9-ßα MT1A, and Zn2Cu10-ßα MT1A each contain a Cu6-ß cluster. The species forming with >10 mol. eq. of 63Cu(I) in ßα-MT1A exhibit emission from the Cu6-ß cluster and an α domain cluster. This high emission intensity is seen at the end of the titrations of 68Zn7-ßα MT1A and the 68Zn4-α MT1A domain fragment suggesting that the initial presence of the Zn(II) results in clustered Cu(I) binding in the α domain.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Zinc Isotopes , Humans , Circular Dichroism , Copper/metabolism , Kidney/metabolism , Metallothionein/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Temperature
9.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080081

ABSTRACT

Among the various nanomaterials present in society, many contain metals or metal compounds [...].

10.
NanoImpact ; 28: 100416, 2022 10.
Article in English | MEDLINE | ID: mdl-35995388

ABSTRACT

The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.


Subject(s)
Nanotechnology , Humans , Reproducibility of Results
11.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887123

ABSTRACT

In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.


Subject(s)
Lung , Quartz , Cell Culture Techniques , Coculture Techniques , Epithelial Cells/metabolism , Gene Expression Profiling , Lung/metabolism , Quartz/toxicity
12.
Int J Mol Sci ; 23(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35742856

ABSTRACT

The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.


Subject(s)
Interleukin-8 , Quartz , Cell Culture Techniques , Coculture Techniques , Epithelial Cells/metabolism , Interleukin-8/metabolism , Lung/metabolism , Quartz/toxicity
13.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458002

ABSTRACT

Exposure to Cr(VI) compounds has been consistently associated with genotoxicity and carcinogenicity, whereas Cr(III) is far less toxic, due to its poor cellular uptake. However, contradictory results have been published in relation to particulate Cr2O3. The aim of the present study was to investigate whether Cr(III) particles exerted properties comparable to water soluble Cr(III) or to Cr(VI), including two nano-sized and one micro-sized particles. The morphology and size distribution were determined by TEM, while the oxidation state was analyzed by XPS. Chromium release was quantified via AAS, and colorimetrically differentiated between Cr(VI) and Cr(III). Furthermore, the toxicological fingerprints of the Cr2O3 particles were established using high-throughput RT-qPCR and then compared to water-soluble Cr(VI) and Cr(III) in A549 and HaCaT cells. Regarding the Cr2O3 particles, two out of three exerted only minor or no toxicity, and the gene expression profiles were comparable to Cr(III). However, one particle under investigation released considerable amounts of Cr(VI), and also resembled the toxicity profiles of Cr(VI); this was also evident in the altered gene expression related to DNA damage signaling, oxidative stress response, inflammation, and cell death pathways. Even though the highest toxicity was found in the case of the smallest particle, size did not appear to be the decisive parameter, but rather the purity of the Cr(III) particles with respect to Cr(VI) content.

14.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614051

ABSTRACT

Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.


Subject(s)
Benzo(a)pyrene , DNA Adducts , Organoids , Humans , Activation, Metabolic , Benzo(a)pyrene/toxicity , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/metabolism , Liver/metabolism , Organoids/drug effects , Organoids/metabolism
15.
Arch Toxicol ; 95(10): 3417-3424, 2021 10.
Article in English | MEDLINE | ID: mdl-34458933

ABSTRACT

The identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.


Subject(s)
Bleomycin/toxicity , Genomic Instability , Mutagenicity Tests/methods , tert-Butylhydroperoxide/toxicity , Animals , Caenorhabditis elegans , DNA Damage/drug effects , High-Throughput Screening Assays , Mutagens/toxicity , Reproducibility of Results
16.
Biomedicines ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34440237

ABSTRACT

Cisplatin is one of the most commonly used drugs for the treatment of various solid cancers. However, its efficacy is restricted by severe side effects, especially dose-limiting nephrotoxicity. New platinum-based compounds are designed to overcome this limitation. Previous investigations showed that the platinum(IV)-nitroxyl complex PN149 is highly cytotoxic in various tumor cell lines. In the present study, investigations with PN149 were extended to normal human kidney tubule epithelia. Coincident with higher intracellular platinum accumulation, the cytotoxicity of PN149 in the proximal tubule epithelial cell line ciPTEC was more pronounced compared to the established platinum chemotherapeutics cisplatin, carboplatin and oxaliplatin. Quantitative gene expression profiling revealed the induction of ROS-inducible and anti-oxidative genes, suggesting an oxidative stress response by PN149. However, in contrast to cisplatin, no pro-inflammatory response was observed. Genes coding for distinct DNA damage response factors and genes related to apoptosis were up-regulated, indicating the activation of the DNA damage response system and induction of the apoptotic cascade by PN149. Altogether, a comparable transcriptional response was observed for PN149 and the platinum chemotherapeutics. However, the lack of inflammatory activity, which is a possible cause contributing to toxicity in human renal proximal tubule epithelia, might indicate the reduced nephrotoxic potential of PN149.

17.
Nanomaterials (Basel) ; 11(7)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199005

ABSTRACT

The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.

18.
Int J Mol Sci ; 22(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068728

ABSTRACT

To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action (MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2 CuO NP. With regard to gene expression profiles, no differences between the cell models were observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However, applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor activation. This study demonstrates that the application of this easy-to-use advanced in vitro model is able to extend the detection of cellular effects provoked by nanomaterials by an immunological response and emphasizes the use of such models to address a more comprehensive MoA.


Subject(s)
Epithelium/drug effects , Metal Nanoparticles/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Oxidative Stress/genetics , Transcription, Genetic/drug effects , A549 Cells , Cell Differentiation/drug effects , Cell Line , Coculture Techniques , Copper/chemistry , Copper/pharmacology , DNA Damage/drug effects , Endocytosis/drug effects , Humans , Lung/drug effects , Lung/pathology , Macrophages/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
19.
Chem Res Toxicol ; 34(3): 839-848, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33645215

ABSTRACT

Poly(ADP-ribose) polymerase 1 (PARP-1) is actively involved in several DNA repair pathways, especially in the detection of DNA lesions and DNA damage signaling. However, the mechanisms of PARP-1 activation are not fully understood. PARP-1 contains three zinc finger structures, among which the first zinc finger has a remarkably low affinity toward zinc ions. Within the present study, we investigated the impact of the cellular zinc status on PARP-1 activity and on genomic stability in HeLa S3 cells. Significant impairment of H2O2-induced poly(ADP-ribosyl)ation and an increase in DNA strand breaks were detected in the case of zinc depletion by the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) which reduced the total and labile zinc concentrations. On the contrary, preincubation of cells with ZnCl2 led to an overload of total as well as labile zinc and resulted in an increased poly(ADP-ribosyl)ation response upon H2O2 treatment. Furthermore, the impact of the cellular zinc status on gene expression profiles was investigated via high-throughput RT-qPCR, analyzing 95 genes related to metal homeostasis, DNA damage and oxidative stress response, cell cycle regulation and proliferation. Genes encoding metallothioneins responded most sensitively on conditions of mild zinc depletion or moderate zinc overload. Zinc depletion induced by higher concentrations of TPEN led to a significant induction of genes encoding DNA repair factors and cell cycle arrest, indicating the induction of DNA damage and genomic instability. Zinc overload provoked an up-regulation of the oxidative stress response. Altogether, the results highlight the potential role of zinc signaling for PARP-1 activation and the maintenance of genomic stability.


Subject(s)
Poly (ADP-Ribose) Polymerase-1/metabolism , Zinc/metabolism , DNA Damage , DNA Repair , HeLa Cells , Humans , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Zinc/chemistry
20.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35010097

ABSTRACT

While the toxicity of metal-based nanoparticles (NP) has been investigated in an increasing number of studies, little is known about metal-based fibrous materials, so-called nanowires (NWs). Within the present study, the physico-chemical properties of particulate and fibrous nanomaterials based on Cu, CuO, Ni, and Ag as well as TiO2 and CeO2 NP were characterized and compared with respect to abiotic metal ion release in different physiologically relevant media as well as acellular reactivity. While none of the materials was soluble at neutral pH in artificial alveolar fluid (AAF), Cu, CuO, and Ni-based materials displayed distinct dissolution under the acidic conditions found in artificial lysosomal fluids (ALF and PSF). Subsequently, four different cell lines were applied to compare cytotoxicity as well as intracellular metal ion release in the cytoplasm and nucleus. Both cytotoxicity and bioavailability reflected the acellular dissolution rates in physiological lysosomal media (pH 4.5); only Ag-based materials showed no or very low acellular solubility, but pronounced intracellular bioavailability and cytotoxicity, leading to particularly high concentrations in the nucleus. In conclusion, in spite of some quantitative differences, the intracellular bioavailability as well as toxicity is mostly driven by the respective metal and is less modulated by the shape of the respective NP or NW.

SELECTION OF CITATIONS
SEARCH DETAIL
...