Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 288
Filter
1.
Healthc Q ; 27(1): 19-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38881481

ABSTRACT

Across Canada, pressures related to staffing, burnout and funding continue to affect healthcare organizations and systems. These pressures impact the quality of care Canadians receive, most notably access to care. Evidence indicates that patients are more likely to suffer from preventable harm during periods of hospital overcrowding and, indeed, very recent data from the Canadian Institute for Health Information suggest that rates of preventable harm have increased modestly in Canadian hospitals. A key lever that can have a positive impact on patient safety culture and contribute to fewer preventable adverse events at an institutional level is systematic formal case reviews. This article describes a large healthcare organization's approach to systematically reviewing serious harm events. An evaluation of both quantitative and qualitative metrics suggests that Unity Health Toronto's critical incident review process has been effective at building a resilient patient safety culture that stood up to the challenges of the COVID-19 pandemic and continues to have a positive impact on patient safety at Unity Health Toronto.


Subject(s)
Patient Safety , Safety Management , Humans , Safety Management/organization & administration , Ontario , Medical Errors/prevention & control , Organizational Culture , COVID-19/prevention & control , Canada
2.
Eur J Pharmacol ; 969: 176434, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458412

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) represents a challenge with high prevalence and limited effectiveness of existing treatments, particularly in cases of treatment-resistant depression (TRD). Innovative strategies and alternative drug targets are therefore necessary. Sildenafil, a selective phosphodiesterase type 5 (PDE5) inhibitor, is known to exert neuroplastic, anti-inflammatory, and antioxidant properties, and is a promising antidepressant drug candidate. AIM: To investigate whether sildenafil monotherapy or in combination with a known antidepressant, can elicit antidepressant-like effects in an adrenocorticotropic hormone (ACTH)-induced rodent model of TRD. METHODS: ACTH-naïve and ACTH-treated male Sprague-Dawley (SD) rats received various sub-acute drug treatments, followed by behavioural tests and biochemical analyses conversant with antidepressant actions. RESULTS: Sub-chronic ACTH treatment induced significant depressive-like behaviour in rats, evidenced by increased immobility during the forced swim test (FST). Sub-acute sildenafil (10 mg/kg) (SIL-10) (but not SIL-3), and combinations of imipramine (15 mg/kg) (IMI-15) and sildenafil (3 mg/kg) (SIL-3) or escitalopram (15 mg/kg) (ESC-15) and SIL-3, exhibited significant antidepressant-like effects. ACTH treatment significantly elevated hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin, norepinephrine, kynurenic acid (KYNUA), quinolinic acid (QUINA), and glutathione. The various mono- and combined treatments significantly reversed some of these changes, whereas IMI-15 + SIL-10 significantly increased glutathione disulfide levels. ESC-15 + SIL-3 significantly reduced plasma corticosterone levels. CONCLUSION: This study suggests that sildenafil shows promise as a treatment for TRD, either as a stand-alone therapy or in combination with a traditional antidepressant. The neurobiological mechanism underlying the antidepressant-like effects of the different sildenafil mono- and combination therapies reflects a multimodal action and cannot be explained in full by changes in the individually measured biomarker levels.


Subject(s)
Depressive Disorder, Major , Imipramine , Male , Rats , Animals , Escitalopram , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Adrenocorticotropic Hormone , Depression/chemically induced , Depression/drug therapy , Rodentia , Depressive Disorder, Major/drug therapy , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal
3.
Behav Processes ; 216: 105004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360379

ABSTRACT

Nesting is a normal, evolutionary conserved rodent behavioural phenotype that is expressed for purposes of breeding, safety, and thermal regulation. Further, nesting is commonly assessed as marker of overall rodent health and wellbeing, with poorer nesting performance generally proposed to resemble a worse state of health. Deer mice can be bidirectionally separated with 30 % of mice presenting with excessively large nesting behaviour (LNB). All laboratory-housed deer mice are exposed to identical environmental conditions. Thus, the functional purpose of LNB remains unknown. Considering the evolutionary functions of nesting, we hypothesized that LNB will be related to an inflated drive to breed and nurse offspring. After breeding two generations of offspring from six 'normal' nesting (NNB) and seven LNB expressing pairs, our data showed that while as fertile as NNB expressing pairs, offspring survival of LNB mice were notably worse (67.9 % vs. 98.3 %). In conclusion, variance in nesting behaviour should be considered when animal health and wellbeing is considered, since it may point to underlying biobehavioural perturbations.


Subject(s)
Fertility , Peromyscus , Animals , Peromyscus/physiology
4.
Cardiol Young ; 34(3): 540-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37560822

ABSTRACT

BACKGROUND: Although COVID-19 is known to have cardiac effects in children, seen primarily in severe disease, more information is needed about the cardiac effects following COVID-19 in non-hospitalised children and adolescents during recovery. This study aims to compare echocardiographic markers of cardiac size and function of children following acute COVID-19 with those of healthy controls. METHODS: This single-centre retrospective case-control study compared 71 cases seen in cardiology clinic following acute COVID-19 with 33 healthy controls. Apical left ventricle, apical right ventricle, and parasternal short axis at the level of the papillary muscles were analysed to measure ventricular size and systolic function. Strain was analysed on vendor-independent software. Statistical analysis was performed using t-test, chi-square, Wilcoxon rank sum, and regression modelling as appropriate (p < 0.05 significant). RESULTS: Compared to controls, COVID-19 cases had slightly higher left ventricular volumes and lower left ventricular ejection fraction and right ventricular fractional area change that remained within normal range. There were no differences in right or left ventricular longitudinal strain between the two groups. Neither initial severity nor persistence of symptoms after diagnosis predicted these differences. CONCLUSIONS: Echocardiographic findings in children and adolescents 6 weeks to 3 months following acute COVID-19 not requiring hospitalisation were overall reassuring. Compared to healthy controls, the COVID-19 group demonstrated mildly larger left ventricular size and lower conventional measures of biventricular systolic function that remained within the normal range, with no differences in biventricular longitudinal strain. Future studies focusing on longitudinal echocardiographic assessment of patients following acute COVID-19 are needed to better understand these subtle differences in ventricular size and function.


Subject(s)
COVID-19 , Child , Humans , Adolescent , Case-Control Studies , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Echocardiography , Papillary Muscles
5.
Steroids ; 202: 109348, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049079

ABSTRACT

The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.


Subject(s)
COVID-19 , Glucocorticoids , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment , Epithelial Sodium Channels/genetics , Dexamethasone , Anti-Inflammatory Agents , Water
6.
Pharmacol Biochem Behav ; 234: 173689, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070656

ABSTRACT

The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , Male , Female , Animals , Mice , Leigh Disease/genetics , Leigh Disease/pathology , Kynurenine , Serotonin , Mice, Knockout , Mood Disorders/genetics , Mitochondrial Diseases/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism
8.
Genes (Basel) ; 14(12)2023 12 16.
Article in English | MEDLINE | ID: mdl-38137047

ABSTRACT

Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/ß-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.


Subject(s)
Colonic Neoplasms , Sex Characteristics , Female , Humans , Male , Estrogens/genetics , Colonic Neoplasms/genetics , Receptors, Estrogen/genetics , Wnt Signaling Pathway , Genomics
9.
Steroids ; 199: 109299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619674

ABSTRACT

The kidney is considered to be one of the most estrogen-responsive, not reproductive organs in the body. Different estrogen receptors (ERs) show sex-specific differences in expression along the nephron and the expression of different ERs also changes with the estrous cycle of the female. The kidney becomes more estrogen-sensitive when estradiol levels are at their highest, just prior to ovulation. This review discusses the different mechanisms by which estradiol can modify the salt and water conservation processes of the kidney through transporter regulation to support the fluid and electrolyte homeostasis changes required in mammalian reproduction. The kidney plays a critical role in regulating blood pressure by controlling fluid homeostasis, and so protects the female cardiovascular system from dramatic changes in whole body fluid volume that occur at critical points in the human menstrual cycle and in pregnancy. This is augmented by the direct actions of estradiol on the cardiovascular system, for example through the direct stimulation of endothelial nitric oxide (NO) synthase, which releases NO to promote vasodilation. This and other mechanisms are less evident in the male and give women a degree of cardiovascular protection up until menopause, when the risks of cardiovascular disease and chronic kidney disease begin to match the risks experienced by males.

10.
Nutr Neurosci ; : 1-17, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37585720

ABSTRACT

Objectives: Both iron and omega-3 (n-3) fatty acids (FA) play important roles in the development and functioning of the brain. We investigated the effects of n-3 FA and iron deficiencies, alone and in combination, during early development on behaviour and brain monoamines in rats. Methods: Using a 2-factorial design, female Wistar rats were randomly allocated to one of four diet groups: Control, n-3 FA deficient (n-3 FAD), iron deficient (ID), or n-3 FAD + ID. Females received these diets throughout mating, pregnancy and lactation. Offspring (n = 24/group; male:female = 1:1) continued on the same diet until post-natal day 42-45, and underwent a sucrose preference test (SPT), novel object recognition test, elevated plus maze (EPM) and social interaction test (SIT). Results: ID offspring consumed less sucrose in the SPT and spent more time in closed arms and less time in open arms of the EPM than non-ID offspring. In female offspring only, ID and n-3 FAD reduced time approaching and together in the SIT, with an additive effect of ID and n-3 FAD for even less time approaching and spent together in the n-3 FAD + ID group compared to controls. ID offspring had higher striatal dopamine and norepinephrine and lower frontal cortex dopamine concentrations. N-3 FAD and ID affected frontal cortex serotonin concentrations in a sex-specific manner. Conclusions: Our results suggest that ID and n-3 FAD during early development provoke anhedonia, anxiety and social dysfunction in rats, with potential additive and attenuating effects when combined. These effects may in part be attributed to disturbances in brain neurochemistry and may be sex-specific.

11.
Ecol Lett ; 26(10): 1687-1699, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37340949

ABSTRACT

Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire regimes and tested whether relationships vary across space and time. Patterns of high-severity fire demonstrate consistent scaling behaviour; as fire size increases, high-severity patches consistently increase in size and homogeneity. Scaling relationships did not differ substantially across space or time at the scales considered here, suggesting that as fire-size distributions potentially shift, stationarity in patch-size scaling can be used to infer future patterns of burn severity.


Subject(s)
Burns , Fires , Wildfires , Humans , Ecosystem , Forests
12.
Horm Behav ; 153: 105376, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244195

ABSTRACT

Trauma-related psychopathology transpires in some individuals after exposure to a life-threatening event. While aberrant adrenergic processes may contribute to this, a clear understanding of how said processes influence trauma-related conditions, remain inadequate. Here, we aimed to develop and describe a novel zebrafish (Danio rerio) model of life-threatening trauma-induced anxiety that may be representative of trauma related anxiety, and to evaluate the impact of stress-paired epinephrine (EPI) exposure in the model system. Four groups of zebrafish were each exposed to different and unique stress-related paradigms, i.e., i) a sham (trauma free), ii) high-intensity trauma (triple hit; THIT), iii) high-intensity trauma in the presence of EPI exposure (EHIT), and iv) EPI exposure on its own, all applied in the presence of a color context. Novel tank anxiety was subsequently assessed at 1, 4, 7 and 14 days after the traumatic event. The present results demonstrate that 1) through day 14, THIT or EPI exposure alone induced persistent anxiety-like behavior, 2) EHIT blunted the delayed anxiety-like sequalae associated with severe trauma, 3) exposure to a trauma-paired color context prior to anxiety testing bolstered the subsequent anxiety-like behavior of THIT, but not EHIT -exposed fish, and 4) despite this, THIT- and EPI-exposed fish showed a lesser degree of contextual avoidance behavior compared to sham- or EHIT-exposed fish. These results indicate that the stressors induced long-lasting anxiety-like behavior reminiscent of post trauma anxiety, while EPI displays complex interactions with the stressor, including a buffering effect to subsequent exposure of a trauma-paired cue.


Subject(s)
Anxiety , Zebrafish , Animals , Anxiety/chemically induced , Anxiety Disorders , Epinephrine/pharmacology , Behavior, Animal
13.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36877837

ABSTRACT

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Subject(s)
Fires , Tracheophyta , Wildfires , Climate , Climate Change
14.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36902003

ABSTRACT

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Sweat , Mice , Humans , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Sweat/metabolism , Sweating , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Gland/metabolism
15.
Bipolar Disord ; 25(8): 661-670, 2023 12.
Article in English | MEDLINE | ID: mdl-36890661

ABSTRACT

OBJECTIVES: The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS: A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS: The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION: Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.


Subject(s)
Bipolar Disorder , Trimetazidine , Rats , Humans , Animals , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Transcriptome , Drug Repositioning , Leukocytes, Mononuclear , Disease Models, Animal
17.
Vet Res Commun ; 47(2): 361-371, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36334218

ABSTRACT

Capture myopathy (CM), which is associated with the capture and translocation of wildlife, is a life-threatening condition that causes noteworthy morbidity and mortality in captured animals. Such wildlife deaths have a significant impact on nature conservation efforts and the socio-economic wellbeing of communities reliant on ecotourism. Several strategies are used to minimise the adverse consequences associated with wildlife capture, especially in ungulates, but no successful preventative or curative measures have yet been developed. The primary cause of death in wild animals diagnosed with CM stems from kidney or multiple organ failure as secondary complications to capture-induced rhabdomyolysis. Ergo, the development of accurate and robust model frameworks is vital to improve our understanding of CM. Still, since CM-related complications are borne from biological and behavioural factors that may be unique to wildlife, e.g. skeletal muscle architecture or flighty nature, certain differences between the physiology and stress responses of wildlife and rodents need consideration in such endeavours. Therefore, the purpose of this review is to summarise some of the major etiological and pathological mechanisms of the condition as it is observed in wildlife and what is currently known of CM-like syndromes, i.e. rhabdomyolysis, in laboratory rats. Additionally, we will highlight some key aspects for consideration in the development and application of potential future rodent models.


Subject(s)
Rhabdomyolysis , Animals , Rats , Rodentia , Rhabdomyolysis/complications , Rhabdomyolysis/veterinary , Animals, Wild , Mammals , Kidney
18.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293473

ABSTRACT

Women consistently show lower incidence and mortality rates for colorectal cancer (CRC) compared to men. Epidemiological evidence supports a pivotal role for estrogen in protecting women against CRC. Estrogen protective effects in CRC have been mainly attributed to the estrogen receptor beta (ERß) however its expression is lost during CRC progression. The role of the G-protein coupled membrane estrogen receptor (GPER/GPER1/GPR30), which remains expressed after ERß loss in CRC, is currently under debate. We hypothesise that estrogen can protect against CRC progression via GPER by modulating the Wnt/ß-catenin proliferative pathway which is commonly hyperactivated in CRC. We sought evidence of sexual dimorphism within the Wnt/ß-catenin pathway by conducting Kaplan-Meier analyses based on gene expression of the Wnt receptor FZD1 (Frizzled 1) in multiple public domain CRC patient data sets. High expression of FZD1 was associated with poor relapse-free survival rates in the male but not the female population. In female-derived HT29 CRC cell lines, we show that ß-catenin nuclear translocation was not affected by treatment with the GPER agonist G1. However, G1 prevented the Wnt pathway-induced upregulation of the JUN oncogene. These novel findings indicate a mechanistic role for GPER in protecting against CRC progression by selectively reducing the tumorigenic effects of hyperactive Wnt/ß-catenin signalling pathways in CRC.


Subject(s)
Colorectal Neoplasms , beta Catenin , Female , Humans , Male , beta Catenin/genetics , beta Catenin/metabolism , Up-Regulation , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Neoplasm Recurrence, Local/genetics , Wnt Signaling Pathway/genetics , HT29 Cells , Estrogens/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
19.
Pediatr Emerg Care ; 38(7): e1372-e1377, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35616568

ABSTRACT

OBJECTIVES: Physician mothers are at risk for early cessation of breastfeeding, in part because of challenges associated with returning to work. Given the inherent unpredictability of emergency medicine practice, we hypothesized that pediatric emergency medicine (PEM) physicians would face unique challenges in continuing breastfeeding while working in their field. The aims of this study were to determine the 6-month breastfeeding rates of PEM physicians, gain insight into their experiences expressing breast milk while working in pediatric emergency departments, and determine factors that support or discourage successful breastfeeding. METHODS: This study was a cross-sectional survey of members of the American Academy of Pediatrics Section on Emergency Medicine via its quarterly membership survey program. Separate survey pathways were developed for respondents who had ever breastfed and those who had not. RESULTS: One hundred ninety-three responded; 91 had breastfed, and 102 had not. Of those who breastfed, 90% did so for 6 months or longer. Mean (SD) duration was 12.5 (7.1) months (range, 2-48 months). Of those who expressed milk at work, only 7.6% felt they "always" had sufficient time to pump; 32% felt they "always" had what they considered to be an appropriate location to pump. Breastfeeding duration rate of at least 6 months was higher for those (66%) who "sometimes" to "always" had access to what they felt were appropriate locations to pump than for those (34%) who "never" or "occasionally" did (98 vs 85%, P = 0.048). Eighty-six percent of respondents who had never breastfed reported being "very supportive" of expressing milk at work. CONCLUSIONS: Breastfeeding PEM physicians have high 6-month breastfeeding rates, and many express milk at work. Although colleagues report being supportive, barriers of perceived lack of sufficient time to pump and appropriate pumping locations remain.


Subject(s)
Pediatrics , Physicians , Breast Feeding , Child , Cross-Sectional Studies , Female , Humans , Mothers , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...