Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Acoust Soc Am ; 155(4): 2549-2560, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38597731

Soundscapes have been studied by researchers from various disciplines, each with different perspectives, approaches, and terminologies. Consequently, the research field determines the actual concept of a specific soundscape with the associated components and also affects the definition itself. This complicates interdisciplinary communication and comparison of results, especially when research areas are involved which are not directly focused on soundscapes. For this reason, we present a formalization that aims to be independent of the concepts from the various disciplines, with the goal of being able to capture the heterogeneous data structure in one layered model. Our model consists of time-dependent sound sources and geodata that influence the acoustic composition of a soundscape represented by our sensor function. Using a case study, we present the application of our formalization by classifying land use types. For this we analyze soundscapes in the form of recordings from different devices at 23 different locations using three-dimensional convolutional neural networks and frequency correlation matrices. In our results, we present that soundscapes can be grouped into classes, but the given land use categories do not have to correspond to them.

2.
Int J Hyg Environ Health ; 259: 114379, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626689

Wastewater analysis can serve as a source of public health information. In recent years, wastewater-based epidemiology (WBE) has emerged and proven useful for the detection of infectious diseases. However, insights from the wastewater treatment plant do not allow for the small-scale differentiation within the sewer system that is needed to analyze the target population under study in more detail. Small-scale WBE offers several advantages, but there has been no systematic overview of its application. The aim of this scoping review is to provide a comprehensive overview of the current state of knowledge on small-scale WBE for infectious diseases, including methodological considerations for its application. A systematic database search was conducted, considering only peer-reviewed articles. Data analyses included quantitative summary and qualitative narrative synthesis. Of 2130 articles, we included 278, most of which were published since 2020. The studies analyzed wastewater at the building level (n = 203), especially healthcare (n = 110) and educational facilities (n = 80), and at the neighborhood scale (n = 86). The main analytical parameters were viruses (n = 178), notably SARS-CoV-2 (n = 161), and antibiotic resistance (ABR) biomarkers (n = 99), often analyzed by polymerase chain reaction (PCR), with DNA sequencing techniques being less common. In terms of sampling techniques, active sampling dominated. The frequent lack of detailed information on the specification of selection criteria and the characterization of the small-scale sampling sites was identified as a concern. In conclusion, based on the large number of studies, we identified several methodological considerations and overarching strategic aspects for small-scale WBE. An enabling environment for small-scale WBE requires inter- and transdisciplinary knowledge sharing across countries. Promoting the adoption of small-scale WBE will benefit from a common international conceptualization of the approach, including standardized and internationally accepted terminology. In particular, the development of good WBE practices for different aspects of small-scale WBE is warranted. This includes the establishment of guidelines for a comprehensive characterization of the local sewer system and its sub-sewersheds, and transparent reporting to ensure comparability of small-scale WBE results.


Drug Resistance, Microbial , Wastewater , Wastewater/microbiology , Humans , Communicable Diseases/epidemiology , Wastewater-Based Epidemiological Monitoring , SARS-CoV-2
3.
Sci Total Environ ; 898: 165458, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37454854

Wastewater surveillance of SARS-CoV-2 proved useful, including for identifying the local appearance of newly identified virus variants. Previous studies focused on wastewater treatment plants (WWTP) with sewersheds of several hundred thousand people or at single building level, representing only a small number of people. Both approaches may prove inadequate for small-scale intra-urban inferences for early detection of emerging or novel virus variants. Our study aims (i) to analyze SARS-CoV-2 single nucleotide variants (SNVs) in wastewater of sub-sewersheds and WWTP using whole genome sequencing in order to (ii) investigate the potential of small-scale detection of novel known SARS-CoV-2 variants of concern (VOC) within a metropolitan wastewater system. We selected three sub-sewershed sampling sites, based on estimated population- and built environment-related indicators, and the inlet of the receiving WWTP in the Ruhr region, Germany. Untreated wastewater was sampled weekly between October and December 2021, with a total of 22 samples collected. SARS-CoV-2 RNA was analyzed by RT-qPCR and whole genome sequencing. For all samples, genome sequences were obtained, while only 13 samples were positive for RT-qPCR. We identified multiple specific SARS-CoV-2 SNVs in the wastewater samples of the sub-sewersheds and the WWTP. Identified SNVs reflected the dominance of VOC Delta at the time of sampling. Interestingly, we could identify an Omicron-specific SNV in one sub-sewershed. A concurrent wastewater study sampling the same WWTP detected the VOC Omicron one week later. Our observations suggest that the small-scale approach may prove particularly useful for the detection and description of spatially confined emerging or existing virus variants circulating in populations. Future studies applying small-scale sampling strategies taking into account the specific features of the wastewater system will be useful to analyze temporal and spatial variance in more detail.


COVID-19 , Humans , RNA, Viral , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Nucleotides
4.
Article En | MEDLINE | ID: mdl-36981969

During the SARS-CoV-2 pandemic, sound pressure levels (SPL) decreased because of lockdown measures all over the world. This study aims to describe SPL changes over varying lockdown measure timeframes and estimate the role of traffic on SPL variations. To account for different COVID-19 lockdown measures, the timeframe during the pandemic was segmented into four phases. To analyze the association between a-weighted decibels (dB(A)) and lockdown phases relative to the pre-lockdown timeframe, we calculated a linear mixed model, using 36,710 h of recording time. Regression coefficients depicting SPL changes were compared, while the model was subsequently adjusted for wind speed, rainfall, and traffic volume. The relative adjusted reduction of during pandemic phases to pre-pandemic levels ranged from -0.99 dB(A) (CI: -1.45; -0.53) to -0.25 dB(A) (CI: -0.96; 0.46). After controlling for traffic volume, we observed little to no reduction (-0.16 dB(A) (CI: -0.77; 0.45)) and even an increase of 0.75 dB(A) (CI: 0.18; 1.31) during the different lockdown phases. These results showcase the major role of traffic regarding the observed reduction. The findings can be useful in assessing measures to decrease noise pollution for necessary future population-based prevention.


Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Communicable Disease Control , Noise , Pressure , Air Pollution/analysis , Environmental Monitoring , Air Pollutants/analysis
5.
J Urban Health ; 100(1): 40-50, 2023 02.
Article En | MEDLINE | ID: mdl-36635521

COVID-19-related health outcomes displayed distinct geographical patterns within countries. The transmission of SARS-CoV-2 requires close spatial proximity of people, which can be influenced by the built environment. Only few studies have analysed SARS-CoV-2 infections related to the built environment within urban areas at a high spatial resolution. This study examined the association between built environment factors and SARS-CoV-2 infections in a metropolitan area in Germany. Polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infections of 7866 citizens of Essen between March 2020 and May 2021 were analysed, aggregated at the neighbourhood level. We performed spatial regression analyses to investigate associations between the cumulative number of SARS-CoV-2 infections per 1000 inhabitants (cum. SARS-CoV-2 infections) up to 31.05.2021 and built environment factors. The cum. SARS-CoV-2 infections in neighbourhoods (median: 11.5, IQR: 8.1-16.9) followed a marked socially determined north-south gradient. The effect estimates of the adjusted spatial regression models showed negative associations with urban greenness, i.e. normalized difference vegetation index (NDVI) (adjusted ß = - 35.36, 95% CI: - 57.68; - 13.04), rooms per person (- 10.40, - 13.79; - 7.01), living space per person (- 0.51, - 0.66; - 0.36), and residential (- 0.07, 0.16; 0.01) and commercial areas (- 0.15, - 0.25; - 0.05). Residential areas with multi-storey buildings (- 0.03, - 0.12; 0.06) and green space (0.03, - 0.05; 0.11) did not show a substantial association. Our results suggest that the built environment matters for the spread of SARS-CoV-2 infections, such as more spacious apartments or higher levels of urban greenness are associated with lower infection rates at the neighbourhood level. The unequal intra-urban distribution of these factors emphasizes prevailing environmental health inequalities regarding the COVID-19 pandemic.


COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Germany/epidemiology , Built Environment
6.
Article En | MEDLINE | ID: mdl-36429733

As sustainable metropolitan regions require more densely built-up areas, a comprehensive understanding of the urban acoustic environment (AE) is needed. However, comprehensive datasets of the urban AE and well-established research methods for the AE are scarce. Datasets of audio recordings tend to be large and require a lot of storage space as well as computationally expensive analyses. Thus, knowledge about the long-term urban AE is limited. In recent years, however, these limitations have been steadily overcome, allowing a more comprehensive analysis of the urban AE. In this respect, the objective of this work is to contribute to a better understanding of the time-frequency domain of the urban AE, analysing automatic audio recordings from nine urban settings over ten months. We compute median power spectra as well as normalised spectrograms for all settings. Additionally, we demonstrate the use of frequency correlation matrices (FCMs) as a novel approach to access large audio datasets. Our results show site-dependent patterns in frequency dynamics. Normalised spectrograms reveal that frequency bins with low power hold relevant information and that the AE changes considerably over a year. We demonstrate that this information can be captured by using FCMs, which also unravel communities of interlinked frequency dynamics for all settings.


Aedes , Animals , Acoustics
7.
Article En | MEDLINE | ID: mdl-33925635

BACKGROUND: A major source of noise pollution is traffic. In Germany, the SARS-CoV-2 lockdown caused a substantial decrease in mobility, possibly affecting noise levels. The aim is to analyze the effects of the lockdown measures on noise levels in the densely populated Ruhr Area. We focus on the analysis of noise levels before and during lockdown considering different land use types, weekdays, and time of day. METHODS: We used data from 22 automatic sound devices of the SALVE (Acoustic Quality and Health in Urban Environments) project, running since 2019 in Bochum, Germany. We performed a pre/during lockdown comparison of A-weighted equivalent continuous sound pressure levels. The study period includes five weeks before and five weeks during the SARS-CoV-2 induced administrative lockdown measures starting on 16 March 2020. We stratified our data by land use category (LUC), days of the week, and daytime. RESULTS: We observed highest noise levels pre-lockdown in the 'main street' and 'commercial areas' (68.4 ± 6.7 dB resp. 61.0 ± 8.0 dB), while in 'urban forests' they were lowest (50.9 ± 6.6 dB). A distinct mean overall noise reduction of 5.1 dB took place, with noise reductions occurring in each LUC. However, the magnitude of noise levels differed considerably between the categories. Weakest noise reductions were found in the 'main street' (3.9 dB), and strongest in the 'urban forest', 'green space', and 'residential area' (5.9 dB each). CONCLUSIONS: Our results are in line with studies from European cities. Strikingly, all studies report noise reductions of about 5 dB. Aiming at a transformation to a health-promoting urban mobility can be a promising approach to mitigating health risks of noise in cities. Overall, the experiences currently generated by the pandemic offer data for best practices and policies for the development of healthy urban transportation-the effects of a lower traffic and more tranquil world were experienced firsthand by people during this time.


COVID-19 , Cities , Communicable Disease Control , Environmental Monitoring , Germany , Humans , SARS-CoV-2
8.
Article De | MEDLINE | ID: mdl-32651659

New approaches in urban development are required to transform cities into sustainable places. This demands a higher degree of urban density, which is hardly conceivable without an increase in sound - mostly in the form of noise. To achieve a high level of acceptance for densification, high-quality and acoustically pleasant urban spaces are essential. Noise reduction measures are necessary, but not sufficient. What is needed is a broadening of the perspective of noise. For urban public health we propose the soundscape approach from two different scientific disciplines. Here, sounds are qualities that can be designed in urban spaces and are an important resource for a healthy city. Linking knowledge about the acoustic environment with human perception will significantly improve our understanding of the relationships between urban acoustic environments, urban spatial contexts, and their effects on human health, both qualitatively and quantitatively. However, a systematic application of these approaches to urban soundscapes is still missing, as is the joint implementation of soundscape approaches in noise impact and urban public health research. This paper aims to introduce the terms sound and noise as well as two soundscape approaches. Subsequently, the aims and methods of the acoustic quality and health in urban environments (SALVE) pilot project are presented. The paper provides early insight into the new field of urban sound quality and soundscapes in the context of urban public health.


Acoustics , Noise , Urban Health , Cities , Germany , Humans , Pilot Projects
...