Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Virol J ; 21(1): 67, 2024 03 20.
Article En | MEDLINE | ID: mdl-38509569

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Influenza A Virus, H5N1 Subtype , Vaccines , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Epitopes, T-Lymphocyte/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Epitopes, B-Lymphocyte , Computational Biology/methods , Molecular Docking Simulation , Vaccines, Subunit/genetics
2.
Lancet Reg Health West Pac ; 44: 100982, 2024 Mar.
Article En | MEDLINE | ID: mdl-38143717

Background: The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of critical care. The aim of the current study was to compare the number of adult critical care beds in relation to population size in Asian countries and regions before (2017) and during (2022) the pandemic. Methods: This observational study collected data closest to 2022 on critical care beds (intensive care units and intermediate care units) in 12 middle-income and 7 high-income economies (using the 2022-2023 World Bank classification), through a mix of methods including government sources, national critical care societies, personal contacts, and data extrapolation. Data were compared with a prior study from 2017 of the same countries and regions. Findings: The cumulative number of critical care beds per 100,000 population increased from 3.0 in 2017 to 9.4 in 2022 (p = 0.003). The median figure for middle-income economies increased from 2.6 (interquartile range [IQR] 1.7-7.8) to 6.6 (IQR 2.2-13.3), and that for high-income economies increased from 11.4 (IQR 7.3-22.8) to 13.9 (IQR 10.7-21.7). Only 3 countries did not see a rise in bed capacity. Where data were available in 2022, 10.9% of critical care beds were in single rooms (median 5.0% in middle-income and 20.3% in high-income economies), and 5.3% had negative pressure (median 0.7% in middle-income and 18.5% in high-income economies). Interpretation: Critical care bed capacity in the studied Asian countries and regions increased close to three-fold from 2017 to 2022. Much of this increase was attributed to middle-income economies, but substantial heterogeneity exists. Funding: None.

3.
Stem Cell Res Ther ; 14(1): 169, 2023 06 26.
Article En | MEDLINE | ID: mdl-37365605

BACKGROUND AND AIMS: The main causes of death in patients with severe Coronavirus disease-2019 (COVID-19) are acute respiratory distress syndrome (ARDS) and multiorgan failure caused by a severe inflammatory cascade. Novel treatment strategies, such as stem-cell-based therapy and their derivatives can be used to relieve inflammation in these cases. In this study, we aimed to evaluate the safety and efficacy of therapy using mesenchymal stromal cells (MSCs) and their derived extracellular vesicles in COVID-19 patients. MATERIALS AND METHODS: COVID-19 patients with ARDS were included in this study and allocated into two study and control groups using block randomization. While all patients received recommended treatment based on guidelines from the national advisory committee for COVID-19 pandemic, the two intervention groups received two consecutive injections of MSCs (100 × 106 cells) or one dose of MSCs (100 × 106 cells) followed by one dose of MSC-derived extracellular vesicles (EVs). Patients were assessed for safety and efficacy by evaluating clinical symptoms, laboratory parameters, and inflammatory markers at baseline and 48 h after the second intervention. RESULTS: A total number of 43 patients (the MSC alone group = 11, MSC plus EV group = 8, and control group = 24) were included in the final analysis. Mortality was reported in three patients in the MSC alone group (RR: 0.49; 95% CI 0.14-1.11; P = 0.08); zero patient in the MSC plus EV group (RR: 0.08; 95% CI 0.005-1.26; P = 0.07) and eight patients in the control group. MSC infusion was associated with a decrease in inflammatory cytokines such as IL-6 (P = 0.015), TNF-α (P = 0.034), IFN-γ (P = 0.024), and CRP (P = 0.041). CONCLUSION: MSCs and their extracellular vesicles can significantly reduce the serum levels of inflammatory markers in COVID-19 patients, with no serious adverse events. Trial registration IRCT, IRCT registration number: IRCT20200217046526N2. Registered 13th April 2020, http://www.irct.ir/trial/47073 .


COVID-19 , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , COVID-19/therapy , Pandemics , Treatment Outcome , Respiratory Distress Syndrome/therapy
4.
Biomed Pharmacother ; 162: 114367, 2023 Jun.
Article En | MEDLINE | ID: mdl-37018987

Despite the need for novel, effective therapeutics for the COVID-19 pandemic, no curative regimen is yet available, therefore patients are forced to rely on supportive and nonspecific therapies. Some SARS-CoV-2 proteins, like the 3 C-like protease (3CLpro) or the major protease (Mpro), have been identified as promising targets for antiviral drugs. The Mpro has major a role in protein processing as well as pathogenesis of the virus, and could be a useful therapeutic target. The antiviral drug nirmatrelvir can keep SARS-CoV-2 from replicating through inhibiting Mpro. Nirmatrelvir was combined with another HIV protease inhibitor, ritonavir, to create Paxlovid (Nirmatrelvir/Ritonavir). The metabolizing enzyme cytochrome P450 3 A is inhibited by ritonavir to lengthen the half-life of nirmatrelvir, so rintonavir acts as a pharmacological enhancer. Nirmatrelvir exhibits potent antiviral activity against current coronavirus variants, despite significant alterations in the SARS-CoV-2 viral genome. Nevertheless, there are still several unanswered questions. This review summarizes the current literature on nirmatrelvir and ritonavir efficacy in treating SARS-CoV-2 infection, and also their safety and possible side effects.


COVID-19 , HIV Protease Inhibitors , Humans , Ritonavir , SARS-CoV-2 , Pandemics , COVID-19 Drug Treatment , Antiviral Agents , Peptide Hydrolases
5.
Int J Crit Illn Inj Sci ; 13(4): 192-198, 2023.
Article En | MEDLINE | ID: mdl-38292399

In coronavirus disease 2019 (COVID-19), the formation of cytokine storm may have a role in worsening of the disease. By attaching the cytokines like interleukin-6 to the cytokine receptors on a cell surface, Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway will be activated in the cytoplasm lead to hyperinflammatory conditions and acute respiratory distress syndrome. Inhibition of JAK/STAT pathway may be useful to prevent the formation of cytokine storm. Tofacitinib is a pan inhibitor of JAKs. In this review, the main characteristics of tofacitinib and its usefulness against COVID-19 pneumonia were reviewed. Tofacitinib may be a hopeful therapeutic candidate against COVID-19 respiratory injury since it inhibits a range of inflammatory pathways. Hence, the agent may be considered a potential therapeutic against the post-COVID-19 respiratory damage. Compared to other JAK inhibitors (JAKi), the administration of tofacitinib in COVID-19 patients may be safer and more effective. Other JAKi such as baricitinib are related to severe adverse events such as thrombotic events compared to more common side effects of tofacitinib.

6.
J Crit Care ; 72: 154146, 2022 12.
Article En | MEDLINE | ID: mdl-36116287

BACKGROUND: Bioimpedance vector analysis (BIVA) has been suggested as a valuable tool in assessing volume status in critically ill patients. However, its effectiveness in guiding fluid removal by continuous renal replacement therapy (CRRT) has not been evaluated. METHODS: In this randomized controlled trial, 65 critically ill patients receiving CRRT were allocated on a 1:1 ratio to have UF prescribed and adjusted using BIVA fluid assessment in the intervention group (32 patients) or conventional clinical parameters (33 patients). The primary outcome was the lean body mass (LBM) water content at CRRT discontinuation, and the secondary outcomes included the mortality rate, urinary output, the duration of ventilation support, and ICU stay. RESULTS: The study group was associated with a lower water content of LBM (80.7 ± 9.4 vs. 85.9 ± 10.4%; p < 0.05), and a higher mean UF-rate and urinary output (1.5 ± 0.8 vs. 1.2 ± 0.5 ml/kg/h and 0.9 ± 0.9 vs 0.5 ± 0.6 ml/kg/h, both: p < 0.05). The mortality rate, the length of ICU stay, and ventilation support duration were similar. CONCLUSION: BIVA guided UF prescription may be associated with a lower rate of fluid overload. Larger studies are required to evaluate its impact on patients' outcomes.


Acute Kidney Injury , Continuous Renal Replacement Therapy , Humans , Critical Illness/therapy , Electric Impedance , Intensive Care Units , Ultrafiltration , Prospective Studies , Water , Renal Replacement Therapy , Acute Kidney Injury/therapy
7.
Cell Mol Biol Lett ; 27(1): 63, 2022 Jul 30.
Article En | MEDLINE | ID: mdl-35907817

The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.


COVID-19 , Respiratory Insufficiency , Cytokines , Humans , Peptidyl-Dipeptidase A , SARS-CoV-2
8.
Iran J Pharm Res ; 21(1): e123947, 2022 Dec.
Article En | MEDLINE | ID: mdl-35765502

More than a year after the onset of the coronavirus disease pandemic in 2019, the disease remains a major global health issue. During this time, health organizations worldwide have tried to provide integrated treatment guidelines to control coronavirus disease 2019 (COVID-19) at different levels. However, due to the novel nature of the disease and the emergence of new variants, medical teams' updating medical information and drug prescribing guidelines should be given special attention. This version is an updated instruction of the National Research Institute of Tuberculosis and Lung Disease (NRITLD) in collaboration with a group of specialists from Masih Daneshvari Hospital in Tehran, Iran, which is provided to update the information of caring clinicians for the treatment and care of COVID-19 hospitalized patients.

9.
Mol Biol Rep ; 49(2): 1545-1549, 2022 Feb.
Article En | MEDLINE | ID: mdl-35028855

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 4.4 million deaths worldwide as of August 24, 2021. Viral infections such as SARS-CoV2 are associated with endoplasmic reticulum (ER) stress and also increased the level of reactive oxygen species. Activating transcription factor 4 (ATF4) is preferentially translated under integrated stress conditions and controls the genes involved in protein homeostasis, amino acid transport and metabolism, and also protection from oxidative stress. The GRP78, regulated either directly or indirectly by ATF4, is an essential chaperone in the ER and overexpressed and appears on the surface of almost all cells during stress and function as a SARS-CoV2 receptor. In this mini-review article, we briefly discuss the effects of SARS-CoV2 infection on the ER stress, and then the stress modulator functions of ATF4 and GRP78 as novel therapeutic targets were highlighted. Finally, the effects of GRP78 inhibitory components as potential factors for targeted therapies for COVID-19 critical cases were discussed.


Activating Transcription Factor 4/metabolism , COVID-19/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , SARS-CoV-2/pathogenicity
10.
Biomed Pharmacother ; 146: 112517, 2022 Feb.
Article En | MEDLINE | ID: mdl-34902743

Rapid changes in the viral genome allow viruses to evade threats posed by the host immune response or antiviral drugs, and can lead to viral persistence in the host cells. RNA-dependent RNA polymerase (RdRp) is an essential enzyme in RNA viruses, which is involved in RNA synthesis through the formation of phosphodiester bonds. Therefore, in RNA viral infections such as SARS-CoV-2, RdRp could be a crucial therapeutic target. The present review discusses the promising application of RdRp inhibitors, previously approved or currently being tested in human clinical trials, in the treatment of RNA virus infections. Nucleoside inhibitors (NIs) bind to the active site of RdRp, while nonnucleoside inhibitors (NNIs) bind to allosteric sites. Given the absence of highly effective drugs for the treatment of COVID-19, the discovery of an efficient treatment for this pandemic is an urgent concern for researchers around the world. We review the evidence for molnupiravir (MK-4482, EIDD-2801), an antiviral drug originally designed for Alphavirus infections, as a potential preventive and therapeutic agent for the management of COVID-19. At the beginning of this pandemic, molnupiravir was in preclinical development for seasonal influenza. When COVID-19 spread dramatically, the timeline for development was accelerated to focus on the treatment of this pandemic. Real time consultation with regulators took place to expedite this program. We summarize the therapeutic potential of RdRp inhibitors, and highlight molnupiravir as a new small molecule drug for COVID-19 treatment.


Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/enzymology , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Clinical Trials as Topic/methods , Cytidine/pharmacology , Cytidine/therapeutic use , Humans , Hydroxylamines/pharmacology , RNA-Dependent RNA Polymerase/metabolism
11.
Drug Dev Ind Pharm ; 47(9): 1353-1361, 2021 Sep.
Article En | MEDLINE | ID: mdl-34666567

High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.


COVID-19 Drug Treatment , BNT162 Vaccine , COVID-19 Vaccines , Humans , Precision Medicine , SARS-CoV-2
12.
J Intensive Care ; 9(1): 60, 2021 Oct 07.
Article En | MEDLINE | ID: mdl-34620252

BACKGROUND: Asia has more critically ill people than any other part of our planet. The aim of this article is to review the development of critical care as a specialty, critical care societies and education and research, the epidemiology of critical illness as well as epidemics and pandemics, accessibility and cost and quality of critical care, culture and end-of-life care, and future directions for critical care in Asia. MAIN BODY: Although the first Asian intensive care units (ICUs) surfaced in the 1960s and the 1970s and specialisation started in the 1990s, multiple challenges still exist, including the lack of intensivists, critical care nurses, and respiratory therapists in many countries. This is aggravated by the brain drain of skilled ICU staff to high-income countries. Critical care societies have been integral to the development of the discipline and have increasingly contributed to critical care education, although critical care research is only just starting to take off through collaboration across groups. Sepsis, increasingly aggravated by multidrug resistance, contributes to a significant burden of critical illness, while epidemics and pandemics continue to haunt the continent intermittently. In particular, the coronavirus disease 2019 (COVID-19) has highlighted the central role of critical care in pandemic response. Accessibility to critical care is affected by lack of ICU beds and high costs, and quality of critical care is affected by limited capability for investigations and treatment in low- and middle-income countries. Meanwhile, there are clear cultural differences across countries, with considerable variations in end-of-life care. Demand for critical care will rise across the continent due to ageing populations and rising comorbidity burdens. Even as countries respond by increasing critical care capacity, the critical care community must continue to focus on training for ICU healthcare workers, processes anchored on evidence-based medicine, technology guided by feasibility and impact, research applicable to Asian and local settings, and rallying of governments for support for the specialty. CONCLUSIONS: Critical care in Asia has progressed through the years, but multiple challenges remain. These challenges should be addressed through a collaborative approach across disciplines, ICUs, hospitals, societies, governments, and countries.

13.
Int Immunopharmacol ; 99: 107998, 2021 Oct.
Article En | MEDLINE | ID: mdl-34315117

The healthcare system in Iran, like most around the world, is managing thousands of patients hospitalised with COVID-19. In Iran, in-hospital mortality is in the region of 25%, rising to 50-60% in patients admitted to intensive care. Hyperinflammation, characterised by cytokine storm, appears to be a hallmark of severe COVID-19 and to date only the anti-inflammatory drug dexamethasone has been shown to reduce mortality in those hospitalised with the disease. There is a sound scientific rationale behind the use of IgM-enriched immunoglobulin in the management of patients with severe COVID-19. It has been used successfully in the management of hyperinflammation in patients with sepsis and has led to improved radiographic scores in patients with severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Recently the successful treatment of a patient with COVID-19 with IgM-enriched immunoglobulin was reported. Here we report the outcome of a further 15 patients hospitalised with COVID-19 treated with IgM-enriched immunoglobulin. Improvements in computed tomography (CT) score were observed in nine patients, indicating that further clinical studies into the use of IgM-enriched immunoglobulin in the treatment of severe COVID-19 are warranted.


COVID-19/therapy , Immunoglobulin M/therapeutic use , Humans , Iran , Lung/pathology
14.
Pathol Res Pract ; 221: 153443, 2021 May.
Article En | MEDLINE | ID: mdl-33930607

Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the control of virus spread has remained challenging given the pitfalls of the current diagnostic tests. Nevertheless, RNA amplification techniques have been the gold standard among other diagnostic methods for monitoring clinical samples for the presence of the virus. In the current paper, we review the shortcomings and strengths of RT-PCR (real-time polymerase chain reaction) techniques for diagnosis of coronavirus disease (COVID)-19. We address the repercussions of false-negative and false-positive rates encountered in the test, summarize approaches to improve the overall sensitivity of this method. We discuss the barriers to the widespread use of the RT-PCR test, and some technical advances, such as RT-LAMP (reverse-transcriptase-loop mediated isothermal amplification). We also address how other molecular techniques, such as immunodiagnostic tests can be used to avoid incorrect interpretation of RT-PCR tests.


COVID-19 Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Humans
15.
Iran J Immunol ; 18(1): 47-53, 2021 03.
Article En | MEDLINE | ID: mdl-33787513

BACKGROUND: Incidence and severity of SARS-CoV2 infection are significantly lower in children and teenagers proposing that certain vaccines, routinely administered to neonates and children may provide cross-protection against this emerging infection. OBJECTIVE: To assess the cross-protection induced by prior measles, mumps and rubella (MMR) vaccinations against COVID-19. METHODS: The antibody responses to MMR and tetanus vaccines were determined in 53 patients affected with SARS-CoV2 infection and 52 age-matched healthy subjects. Serum levels of antibodies specific for NP and RBD of SARS-CoV2 were also determined in both groups of subjects with ELISA. RESULTS: Our results revealed significant differences in anti-NP (P<0.0001) and anti-RBD (P<0.0001) IgG levels between patients and healthy controls. While the levels of rubella- and mumps specific IgG were not different in the two groups of subjects, measles-specific IgG was significantly higher in patients (P<0.01). The serum titer of anti-tetanus antibody, however, was significantly lower in patients compared to healthy individuals (P<0.01). CONCLUSION: Our findings suggest that measles vaccination triggers those B cells cross-reactive with SARS-CoV2 antigens leading to the production of increased levels of measles-specific antibody.


Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , Immunization , Immunoglobulin G/blood , Measles-Mumps-Rubella Vaccine/therapeutic use , SARS-CoV-2/immunology , Age Factors , Aged , B-Lymphocytes/immunology , B-Lymphocytes/virology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Cross Protection , Cross Reactions , Female , Host-Pathogen Interactions , Humans , Male , Measles-Mumps-Rubella Vaccine/immunology , Middle Aged , Tetanus Toxoid/immunology , Tetanus Toxoid/therapeutic use
16.
Stem Cell Res Ther ; 12(1): 91, 2021 01 29.
Article En | MEDLINE | ID: mdl-33514427

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a fatal complication of coronavirus disease 2019 (COVID-19). There are a few reports of allogeneic human mesenchymal stem cells (MSCs) as a potential treatment for ARDS. In this phase 1 clinical trial, we present the safety, feasibility, and tolerability of the multiple infusions of high dose MSCs, which originated from the placenta and umbilical cord, in critically ill COVID-19-induced ARDS patients. METHODS: A total of 11 patients diagnosed with COVID-19-induced ARDS who were admitted to the intensive care units (ICUs) of two hospitals enrolled in this study. The patients were critically ill with severe hypoxemia and required mechanical ventilation. The patients received three intravenous infusions (200 × 106 cells) every other day for a total of 600 × 106 human umbilical cord MSCs (UC-MSCs; 6 cases) or placental MSCs (PL-MSCs; 5 cases). FINDINGS: There were eight men and three women who were 42 to 66 years of age. Of these, six (55%) patients had comorbidities of diabetes, hypertension, chronic lymphocytic leukemia (CLL), and cardiomyopathy (CMP). There were no serious adverse events reported 24-48 h after the cell infusions. We observed reduced dyspnea and increased SpO2 within 48-96 h after the first infusion in seven patients. Of these seven patients, five were discharged from the ICU within 2-7 days (average: 4 days), one patient who had signs of acute renal and hepatic failure was discharged from the ICU on day 18, and the last patient suddenly developed cardiac arrest on day 7 of the cell infusion. Significant reductions in serum levels of tumor necrosis factor-alpha (TNF-α; P < 0.01), IL-8 (P < 0.05), and C-reactive protein (CRP) (P < 0.01) were seen in all six survivors. IL-6 levels decreased in five (P = 0.06) patients and interferon gamma (IFN-γ) levels decreased in four (P = 0.14) patients. Four patients who had signs of multi-organ failure or sepsis died in 5-19 days (average: 10 days) after the first MSC infusion. A low percentage of lymphocytes (< 10%) and leukocytosis were associated with poor outcome (P = 0.02). All six survivors were well with no complaints of dyspnea on day 60 post-infusion. Radiological parameters of the lung computed tomography (CT) scans showed remarkable signs of recovery. INTERPRETATION: We suggest that multiple infusions of high dose allogeneic prenatal MSCs are safe and can rapidly improve respiratory distress and reduce inflammatory biomarkers in some critically ill COVID-19-induced ARDS cases. Patients that develop sepsis or multi-organ failure may not be good candidates for stem cell therapy. Large randomized multicenter clinical trials are needed to discern the exact therapeutic potentials of MSC in COVID-19-induced ARDS.


COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Respiratory Distress Syndrome/therapy , Adult , Aged , Biomarkers/blood , Comorbidity , Critical Care , Critical Illness , Female , Humans , Hypoxia/virology , Inflammation , Intensive Care Units , Lung/diagnostic imaging , Male , Mesenchymal Stem Cells/cytology , Middle Aged , Patient Safety , Placenta/cytology , Pregnancy , Respiration, Artificial , Respiratory Distress Syndrome/virology , Sepsis/virology , Tomography, X-Ray Computed , Transplantation, Homologous , Treatment Outcome , Umbilical Cord/cytology
17.
Iran J Pharm Res ; 20(4): 1-8, 2021.
Article En | MEDLINE | ID: mdl-35194422

Coronavirus disease -19 (COVID-19) pandemic, caused by SARS-CoV-2, has gradually spread worldwide, becoming a major public health event. This situation requires designing a novel antiviral agent against the SARS-CoV-2; however, this is time-consuming and the use of repurposed medicines may be promising. One such medicine is favipiravir, primarily introduced as an anti-influenza agent in east world. The aim of this study was to evaluate the efficacy and safety of favipiravir in comparison with lopinavir-ritonavir in SARS-CoV-2 infection. In this randomized clinical trial, 62 patients were recruited. These patients had bilateral pulmonary infiltration with peripheral oxygen saturation lower than 93%. The median time from symptoms onset to intervention initiation was seven days. Favipiravir was not available in the Iranian pharmaceutical market, and it was decided to formulate it at the research laboratory of School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The patients received favipiravir tablet at a dose of 1600 mg orally twice a day for day one and then 600 mg orally twice a day for days 2 to 6. In the second group, the patients received lopinavir-ritonavir combination tablet at a dose of 200/50 mg twice a day for seven days. Fever, cough, and dyspnea were improved significantly in favipiravir group in comparison with lopinavir-ritonavir group on days four and five. Mortality rate and ICU stay in both groups were similar, and there was no significant difference in this regard (P = 0.463 and P = 0.286, respectively). Chest X-ray improvement also was not significantly different between the two groups. Adverse drug reactions occurred in both groups, and impaired liver enzymes were the most frequent adverse effect. In conclusion, early administration of oral favipiravir may reduce the duration of clinical signs and symptoms in patients with COVID-19 and hospitalization period. The mortality rate also should be investigated in future clinical trials.

18.
Ann Am Thorac Soc ; 18(8): 1352-1359, 2021 08.
Article En | MEDLINE | ID: mdl-33284738

Rationale: There are limited data on mechanical discontinuation practices in Asia. Objectives: To document self-reported mechanical discontinuation practices and determine whether there is clinical equipoise regarding protocolized weaning among Asian Intensive Care specialists. Methods: A survey using a validated questionnaire, distributed using a snowball method to Asian Intensive Care specialists. Results: Of the 2,967 invited specialists from 20 territories, 2,074 (69.9%) took part. The majority of respondents (60.5%) were from China. Of the respondents, 42% worked in intensive care units (ICUs) where respiratory therapists were present; 78.9% used a spontaneous breathing trial as the initial weaning step; 44.3% frequently/always used pressure support (PS) alone, 53.4% intermittent spontaneous breathing trials with PS in between, and 19.8% synchronized intermittent mandatory ventilation with PS as a weaning mode. Of the respondents, 56.3% routinely stopped feeds before extubation, 71.5% generally followed a sedation protocol or guideline, and 61.8% worked in an ICU with a weaning protocol. Of these, 78.2% frequently always followed the protocol. A multivariate analysis involving a modified Poisson regression analysis showed that working in an ICU with a weaning protocol and frequently/always following it was positively associated with an upper-middle-income territory, a university-affiliated hospital, or in an ICU that employed respiratory therapists; and negatively with a low-income or lower-middle-income territory or a public hospital. There was no significant association with "in-house" intensivist at night, multidisciplinary ICU, closed ICU, or nurse-patient ratio. There was heterogeneity in agreement/disagreement with the statement, "evidence clearly supports protocolized weaning over nonprotocolized weaning." Conclusions: A substantial minority of Asian Intensive Care specialists do not wean patients in accordance with the best available evidence or current guidelines. There is clinical equipoise regarding the benefit of protocolized weaning.


Respiration, Artificial , Ventilator Weaning , Asia , Humans , Intensive Care Units , Surveys and Questionnaires
19.
Tanaffos ; 19(2): 160-164, 2020 Nov.
Article En | MEDLINE | ID: mdl-33262805

A novel coronavirus disease (COVID-19) was reported in Wuhan, China in December 2019 and spread rapidly around the world, causing high rates of mortality and morbidity. This disease is known for its respiratory manifestations. Also, there have been several reports of neurological involvement in patients with COVID-19. In this study, we present a 55-year-old Iranian male patient, who was referred from another medical center with a decreased level of consciousness. Upon admission, only respiratory signs of COVID-19 were observed, but later, some neurological manifestations were also observed, such as an alteration in mental status, disorientation, stupor, and finally coma. In radiological studies, a hemorrhagic encephalopathy pattern was detected. Despite improved oxygenation and alleviation of respiratory symptoms with antiviral and anti-inflammatory therapies, cerebral injuries progressed, and the patient died due to severe brain damage.

20.
Int J Antimicrob Agents ; 56(6): 106208, 2020 Dec.
Article En | MEDLINE | ID: mdl-33213829

The recent coronavirus disease 2019 outbreak around the world has had an enormous impact on the global health burden, threatening the lives of many individuals, and has had severe socio-economic consequences. Many pharmaceutical and biotechnology companies have commenced intensive research on different therapeutic strategies, from repurposed antiviral drugs to vaccines and monoclonal antibodies to prevent the spread of the disease and treat infected patients. Among the various strategies, advanced therapeutic approaches including cell- and gene-editing-based therapeutics are also being investigated, and initial results in in-vitro and early phase I studies have been promising. However, further assessments are required. This article reviews the underlying mechanisms for the pathogenesis of severe acute respiratory syndrome coronavirus-2, and discusses available therapeutic candidates and advanced modalities that are being evaluated in in-vitro/in-vivo models and are of note in clinical trials.


COVID-19 Drug Treatment , Regenerative Medicine , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Cytokine Release Syndrome/immunology , Humans
...