Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Transl Med ; 16(749): eadn2199, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809964

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.


Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies
2.
medRxiv ; 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38076831

Seroprevalence studies are the gold standard for disease surveillance, and serology was used to determine eligibility for the first licensed dengue vaccine. However, expanding flavivirus endemicity, co-circulation, and vaccination complicate serology results. Among 713 healthy Cambodian children, a commonly used indirect dengue virus IgG ELISA (PanBio) had a lower specificity than previously reported (94% vs. 100%). Of those with false positive PanBio results, 46% had detectable neutralizing antibodies against other flaviviruses, with the highest frequency against West Nile virus (WNV). Immunity to non-dengue flaviviruses can impact dengue surveillance and potentially pre-vaccine screening efforts.

3.
medRxiv ; 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38077039

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on pre-existing antibodies and the subsequent infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) has been shown to increase DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by all four serotypes in a pediatric Nicaraguan cohort. Of 3,412 participants in 2022, 10.6% experienced symptomatic DENV infections caused by DENV1 (n=139), DENV4 (n=133), DENV3 (n=54), DENV2 (n=9), or an undetermined serotype (n=39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since the last infection, cohort year, and repeat measurements were used to predict disease risk. Compared to flavivirus-naïve participants, primary ZIKV infection increased disease risk of DENV4 (relative risk = 2.62, 95% confidence interval: 1.48-4.63) and DENV3 (2.90, 1.34-6.27) but not DENV1 (1.20, 0.72-1.99). Primary DENV infection or a DENV followed by ZIKV infection also increased DENV4 risk. We re-analyzed 19 years of cohort data and demonstrated that prior flavivirus-immunity and pre-existing antibody titer differentially affected disease risk for incoming serotypes, increasing risk of DENV2 and DENV4, protecting against DENV1, and protecting at high titers but enhancing at low titers against DENV3. We thus find that prior ZIKV infection, like prior DENV infection, increases risk of certain DENV serotypes. Cross-reactivity among flaviviruses should be carefully considered when assessing vaccine safety and efficacy.

4.
BMC Infect Dis ; 23(1): 345, 2023 May 23.
Article En | MEDLINE | ID: mdl-37221466

BACKGROUND: The four co-circulating and immunologically interactive dengue virus serotypes (DENV1-4) pose a unique challenge to vaccine design because sub-protective immunity can increase the risk of severe dengue disease. Existing dengue vaccines have lower efficacy in DENV seronegative individuals but higher efficacy in DENV exposed individuals. There is an urgent need to identify immunological measures that are strongly associated with protection against viral replication and disease following sequential exposure to distinct serotypes. METHODS/DESIGN: This is a phase 1 trial wherein healthy adults with neutralizing antibodies to zero (seronegative), one non-DENV3 (heterotypic), or more than one (polytypic) DENV serotype will be vaccinated with the live attenuated DENV3 monovalent vaccine rDEN3Δ30/31-7164. We will examine how pre-vaccine host immunity influences the safety and immunogenicity of DENV3 vaccination in a non-endemic population. We hypothesize that the vaccine will be safe and well tolerated, and all groups will have a significant increase in the DENV1-4 neutralizing antibody geometric mean titer between days 0 and 28. Compared to the seronegative group, the polytypic group will have lower mean peak vaccine viremia, due to protection conferred by prior DENV exposure, while the heterotypic group will have higher mean peak viremia, due to mild enhancement. Secondary and exploratory endpoints include characterizing serological, innate, and adaptive cell responses; evaluating proviral or antiviral contributions of DENV-infected cells; and immunologically profiling the transcriptome, surface proteins, and B and T cell receptor sequences and affinities of single cells in both peripheral blood and draining lymph nodes sampled via serial image-guided fine needle aspiration. DISCUSSION: This trial will compare the immune responses after primary, secondary, and tertiary DENV exposure in naturally infected humans living in non-endemic areas. By evaluating dengue vaccines in a new population and modeling the induction of cross-serotypic immunity, this work may inform vaccine evaluation and broaden potential target populations. TRIAL REGISTRATION: NCT05691530 registered on January 20, 2023.


Dengue Vaccines , Severe Dengue , Adult , Humans , Viremia , Vaccines, Attenuated , Vaccination , Antibodies, Neutralizing
5.
J Nutr ; 153(7): 1950-1958, 2023 07.
Article En | MEDLINE | ID: mdl-37253412

BACKGROUND: The iron regulatory hormones erythroferrone (ERFE), erythropoietin (EPO), and hepcidin, and the cargo receptor nuclear receptor coactivator 4 (NCOA4) are expressed in the placenta. However, determinants of placental expression of these proteins and their associations with maternal or neonatal iron status are unknown. OBJECTIVES: To characterize expression of placental ERFE, EPO, and NCOA4 mRNA in placentae from newborns at increased risk of iron deficiency and to evaluate these in relation to maternal and neonatal iron status and regulatory hormones. METHODS: Placentae were collected from 114 neonates born to adolescents carrying singletons (14-18 y) and 110 neonates born to 54 adults (20-46 y) carrying multiples. Placental EPO, ERFE, and NCOA4 mRNA expression were measured by RT-qPCR and compared with maternal and neonatal iron status indicators (SF, sTfR, total body iron, serum iron) and hormones. RESULTS: Placental ERFE, EPO, and NCOA4 mRNA were detected in all placentae delivered between 25 and 42 wk of gestation. Relationships between placental ERFE and EPO differed by cohort. In the multiples cohort, placental EPO and ERFE were positively correlated (P = 0.004), but only a positive trend (P = 0.08) was evident in the adolescents. Placental EPO and ERFE were not associated with maternal or neonatal iron status markers or hormones in either cohort. Placental NCOA4 was not associated with placental EPO or ERFE in either cohort but was negatively associated with maternal SF (P = 0.03) in the multiples cohort and positively associated with neonatal sTfR (P = 0.009) in the adolescents. CONCLUSIONS: The human placenta expresses ERFE, EPO, and NCOA4 mRNA as early as 25 wk of gestation. Placental expression of ERFE and EPO transcripts was not associated with maternal or neonatal iron status. Greater placental NCOA4 transcript expression was evident in women and newborns with poor iron status (lower SF and higher sTfR, respectively). Further research is needed to characterize the roles of these proteins in the human placenta. TRIAL REGISTRATION NUMBER: These clinical trials were registered at clinicaltrials.gov as NCT01019902 (https://clinicaltrials.gov/ct2/show/NCT01019902) and NCT01582802 (https://clinicaltrials.gov/ct2/show/NCT01582802).


Erythropoietin , Iron , Adolescent , Adult , Female , Humans , Infant, Newborn , Pregnancy , Erythropoietin/genetics , Hepcidins/genetics , Hormones , Iron/metabolism , Placenta/metabolism , RNA, Messenger/genetics
...