Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Article in English | MEDLINE | ID: mdl-39107892

ABSTRACT

OBJECTIVE: Pathogenesis of antiphospholipid syndrome (APS) remains poorly elucidated. We aimed to evaluate for the first time, kidney transcriptome profiles in primary APS vs systemic lupus erythematosus (SLE) and control subjects. METHODS: We performed RNA-sequencing on archival formalin-fixed paraffin-embedded kidney biopsies from APS (n = 4) SLE (n = 5), and control (n = 3) individuals, differential gene expression analysis (DGEA), and enrichment analysis using gene ontology (GO), and CORUM, KEGG and Reactome pathway databases. RESULTS: Two-dimensional projection showed a distinct gene profile in primary APS vs control kidneys samples, but similar to SLE. DGEA in APS vs controls returned 276 upregulated and 217 downregulated genes, while the comparison between APS and SLE identified 75 upregulated and 111 downregulated genes. In 276 upregulated genes, enriched GO terms were (innate) immune response, inflammatory response, leucocyte and lymphocyte activation, cytokine production and T cell activation. CORUM and KEGG revealed complement-related genes (C3, C4A, C4B). Expression levels showed logFC values of 2.25 (p= 1.58e-05) for C3, 2.17 (p= 2.69e-06) for C4A, and 2.135 (p= 3.7e-06) for C4B in APS vs controls, without differences between APS and SLE. Interferon (IFN) alpha/beta signalling was revealed by Reactome. Expression levels of nine IFN-regulated genes found upregulated in APS vs control kidneys (p-values ≤ 0.001 for all). Examining neutrophil-extracellular traps (NETs)-related gene expression, 13 of 15 upregulated NETs-related genes exhibited higher expression in APS vs controls but not vs SLE. CONCLUSION: Complement, interferon and NETs-related genes are highly expressed in APS kidney tissues, similarly to SLE, pointing out the role of innate immunity in APS nephropathy pathogenesis and potential treatment targets.

2.
EMBnet J ; 292024.
Article in English | MEDLINE | ID: mdl-38845752

ABSTRACT

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.

3.
Nat Commun ; 14(1): 5882, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735172

ABSTRACT

The activation and accumulation of lung fibroblasts resulting in aberrant deposition of extracellular matrix components, is a pathogenic hallmark of Idiopathic Pulmonary Fibrosis, a lethal and incurable disease. In this report, increased expression of TKS5, a scaffold protein essential for the formation of podosomes, was detected in the lung tissue of Idiopathic Pulmonary Fibrosis patients and bleomycin-treated mice. Τhe profibrotic milieu is found to induce TKS5 expression and the formation of prominent podosome rosettes in lung fibroblasts, that are retained ex vivo, culminating in increased extracellular matrix invasion. Tks5+/- mice are found resistant to bleomycin-induced pulmonary fibrosis, largely attributed to diminished podosome formation in fibroblasts and decreased extracellular matrix invasion. As computationally predicted, inhibition of src kinase is shown to potently attenuate podosome formation in lung fibroblasts and extracellular matrix invasion, and bleomycin-induced pulmonary fibrosis, suggesting pharmacological targeting of podosomes as a very promising therapeutic option in pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Podosomes , Animals , Humans , Mice , Adaptor Proteins, Vesicular Transport , Bleomycin , Extracellular Matrix , Fibroblasts , Idiopathic Pulmonary Fibrosis/chemically induced , Proto-Oncogene Proteins pp60(c-src)/metabolism
4.
Metabolites ; 12(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35736432

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent cancers affecting humans, with a complex genetic and environmental aetiology. Unlike cancers with known environmental, heritable, or sex-linked causes, sporadic CRC is hard to foresee and has no molecular biomarkers of risk in clinical use. One in twenty CRC cases presents with an established heritable component. The remaining cases are sporadic and associated with partially obscure genetic, epigenetic, regenerative, microbiological, dietary, and lifestyle factors. To tackle this complexity, we should improve the practice of colonoscopy, which is recommended uniformly beyond a certain age, to include an assessment of biomarkers indicative of individual CRC risk. Ideally, such biomarkers will be causal to the disease and potentially modifiable upon dietary or therapeutic interventions. Multi-omics analysis, including transcriptional, epigenetic as well as metagenomic, and metabolomic profiles, are urgently required to provide data for risk analyses. The aim of this article is to provide a perspective on the multifactorial derailment of homeostasis leading to the initiation of CRC, which may be explored via multi-omics and Gut-on-Chip analysis to identify much-needed predictive biomarkers.

5.
Nucleic Acids Res ; 50(10): 5577-5598, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35640596

ABSTRACT

A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5'LTR. Catchet-MS identified known and novel latent 5'LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/metabolism , HIV-1/genetics , Humans , Ikaros Transcription Factor/genetics , Proviruses/genetics , Thalidomide/metabolism , Thalidomide/pharmacology , Transcription Factors/metabolism , Virus Activation , Virus Latency
6.
Mol Ecol Resour ; 22(7): 2506-2523, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35593171

ABSTRACT

Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with. Nevertheless, SM bioinformatics tools and DNA extraction methods rely on resources not necessarily optimized for honey. In this study, we compared five widely used taxonomic classifiers using simulated species communities commonly found in honey. We found that Kraken 2 with a threshold of 0.5 performs best in assessing species distribution. We also optimized a simple NaOH-based honey DNA extraction methodology (Direct-SM), which profiled species seasonal variability similarly to an established column-based DNA extraction approach (SM). Both approaches produce results consistent with melissopalinology analysis describing the botanical landscape surrounding the apiary. Interestingly, we detected a strong stability of the bacteria constituting the core and noncore gut microbiome across seasons, pointing to the potential utility of honey for noninvasive assessment of bee microbiota. Finally, the Direct-SM approach to detect Varroa correlates well with the biomonitoring of mite infestation observed in hives. These observations suggest that Direct-SM methodology has the potential to comprehensively describe honeybee ecological niches and can be tested as a building block for large-scale studies to assess bee health in the field.


Subject(s)
Gastrointestinal Microbiome , Honey , Microbiota , Animals , Bacteria/genetics , Bees/genetics , DNA , Humans , Metagenomics
7.
Methods Protoc ; 5(2)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35314664

ABSTRACT

The rise of modern gene expression profiling techniques, such as RNA-Seq, has generated a wealth of high-quality datasets spanning all fields of current biological research. The large data sets and the continually expanding applications for which they can be mined, such as the investigation of alternative splicing and others, have created novel challenges for data management, exploration, analysis, and visualization. Although a large variety of RNA-Seq data analysis software packages has emerged, both open-source and commercial, most fail to simultaneously address the above challenges, while they lack obvious functionalities, such as estimating RNA abundance over non-annotated genomic regions of interest in real time. We have developed SeqCVIBE, an R Shiny web application for the interactive exploration, analysis, visualization, and genome browsing of large RNA-Seq datasets. SeqCVIBE allows for multiple on-the-fly visualizations and calculations, such as differential expression analysis, averaging genomic signals over specific regions of the genome, and calculating RNA abundances over custom, potentially non-annotated regions, such as novel long non-coding RNAs. In addition, SeqCVIBE comprises a database for pre-analyzed data, where users can navigate and explore results, as well as perform a variety of basic on-the-fly analyses and export the outcomes. Finally, we demonstrate the value of SeqCVIBE in the elucidation of the interplay of a novel lincRNA, WiNTRLINC1, and Wnt signaling in colon cancer.

8.
Biomedicines ; 10(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35203702

ABSTRACT

The microbiome is emerging as a major player in tissue homeostasis in health and disease. Gut microbiome dysbiosis correlates with several autoimmune and metabolic diseases, while high-fat diets and ensuing obesity are known to affect the complexity and diversity of the microbiome, thus modulating pathophysiology. Moreover, the existence of a gut-liver microbial axis has been proposed, which may extend to the lung. In this context, we systematically compared the microbiomes of the gut, liver, and lung of mice fed a high-fat diet to those of littermates fed a matched control diet. We carried out deep sequencing of seven hypervariable regions of the 16S rRNA microbial gene to examine microbial diversity in the tissues of interest. Comparison of the local microbiomes indicated that lung tissue has the least diverse microbiome under healthy conditions, while microbial diversity in the healthy liver clustered closer to the gut. Obesity increased microbial complexity in all three tissues, with lung microbial diversity being the most modified. Obesity promoted the expansion of Firmicutes along the gut-liver-lung axis, highlighting staphylococcus as a possible pathologic link between obesity and systemic pathophysiology, especially in the lungs.

9.
Front Immunol ; 13: 752215, 2022.
Article in English | MEDLINE | ID: mdl-35222366

ABSTRACT

The four isoforms of the RNA-binding protein hnRNPD/AUF1 have been proposed to limit the use of inflammatory mRNAs in innate immune cells. Mice engineered to lack AUF1s in all tissues are sensitive to acute inflammatory assaults; however, they also manifest complex degenerations obscuring assessment of AUF1s' roles in innate immune cells. Here, we restricted a debilitating AUF1 mutation to the mouse myeloid lineage and performed disease-oriented phenotypic analyses to assess the requirement of AUF1s in variable contexts of innate immune reactivity. Contrary to the whole-body mutants, the myeloid mutants of AUF1s did not show differences in their susceptibility to cytokine storms occurring during endotoxemia; neither in type-I cell-mediated reactions driving intestinal inflammation by chemical irritants. Instead, they were resistant to allergic airway inflammation and displayed reductions in inflammatory infiltrates and an altered T-helper balance. The ex-vivo analysis of macrophages revealed that the loss of AUF1s had a minimal effect on their proinflammatory gene expression. Moreover, AUF1s were dispensable for the classical polarization of cultured macrophages by LPS & IFNγ correlating with the unchanged response of mutant mice to systemic and intestinal inflammation. Notably, AUF1s were also dispensable for the alternative polarization of macrophages by IL4, TGFß and IL10, known to be engaged in allergic reactions. In contrast, they were required to switch proinflammatory macrophages towards a pro-angiogenic phenotype induced by adenosine receptor signals. Congruent to this, the myeloid mutants of AUF1 displayed lower levels of vascular remodeling factors in exudates from allergen exposed lungs; were unable to support the growth and inflammatory infiltration of transplanted melanoma tumors; and failed to vascularize inert grafts unless supplemented with angiogenic factors. Mechanistically, adenosine receptor signals enhanced the association of AUF1s with the Vegfa, Il12b, and Tnf mRNAs to differentially regulate and facilitate the pro-angiogenic switch. Our data collectively demonstrates that AUF1s do not act as general anti-inflammatory factors in innate immune cells but have more specialized roles in regulons allowing specific innate immune cell transitions to support tissue infiltration and remodeling processes.


Subject(s)
Hypersensitivity , Neoplasms , Adenosine/metabolism , Animals , Hypersensitivity/metabolism , Inflammation , Lung/metabolism , Macrophages , Mice , Myeloid Cells/metabolism , Neoplasms/metabolism , RNA, Messenger/genetics
10.
mBio ; 12(6): e0298021, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34872356

ABSTRACT

To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5' long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency. IMPORTANCE A reservoir of latent HIV-1 infected cells persists in the presence of combination antiretroviral therapy (cART), representing a major obstacle for viral eradication. Reactivation of the latent HIV-1 provirus is part of curative strategies which aim to promote clearance of the infected cells. Using a two-color haploid screen, we identified 69 candidate genes as latency-maintaining host factors and functionally validated a subset of 10 of those in additional T-cell-based cell line models of HIV-1 latency. We further demonstrated that CHD9 is associated with HIV-1's promoter, the 5' LTR, while this association is lost upon reactivation. Additionally, we characterized the latency reversal potential of FDA compounds targeting ADK, NF1, and GRIK5 and identify the GRIK5 inhibitor topiramate as a viable latency reversal agent with clinical potential.


Subject(s)
HIV Infections/genetics , HIV-1/physiology , Haploidy , Virus Latency , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , Host-Pathogen Interactions , Humans , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Virus Activation
11.
Front Immunol ; 12: 746203, 2021.
Article in English | MEDLINE | ID: mdl-34675930

ABSTRACT

The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.


Subject(s)
Antibodies, Viral/blood , Asymptomatic Infections , Immunity, Innate/genetics , SARS-CoV-2/immunology , Transcriptome/genetics , Adult , COVID-19/pathology , Female , Gene Expression Profiling , Humans , Immunity, Innate/immunology , Male , RNA, Messenger/genetics , Sequence Analysis, RNA , Severity of Illness Index
12.
Biomolecules ; 11(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34439912

ABSTRACT

Technological advances in high-throughput techniques have resulted in tremendous growth of complex biological datasets providing evidence regarding various biomolecular interactions. To cope with this data flood, computational approaches, web services, and databases have been implemented to deal with issues such as data integration, visualization, exploration, organization, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more and more difficult for an end user to know what the scope and focus of each repository is and how redundant the information between them is. Several repositories have a more general scope, while others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately, many of these databases are self-contained or poorly documented and maintained. For a clearer view, in this article we provide a comprehensive categorization, comparison and evaluation of such repositories for different bioentity interaction types. We discuss most of the publicly available services based on their content, sources of information, data representation methods, user-friendliness, scope and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review to reach a broad readership varying from biomedical beginners to experts and serve as a reference article in the field of Network Biology.


Subject(s)
Medical Informatics/methods , Protein Interaction Mapping/methods , Software , Systems Biology/methods , Animals , Computational Biology/methods , Databases, Factual , Humans , Protein Binding , Protein Interaction Maps , RNA/metabolism , Signal Transduction
13.
Elife ; 102021 07 30.
Article in English | MEDLINE | ID: mdl-34328417

ABSTRACT

The molecular events that drive hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum. HBV-infected organoids produced covalently closed circular DNA (cccDNA) and HBV early antigen (HBeAg), expressed intracellular HBV RNA and proteins, and produced infectious HBV. This ex vivo HBV-infected primary differentiated hepatocyte organoid platform was amenable to drug screening for both anti-HBV activity and drug-induced toxicity. We also studied HBV replication in transgenically modified organoids; liver organoids exogenously overexpressing the HBV receptor sodium taurocholate co-transporting polypeptide (NTCP) after lentiviral transduction were not more susceptible to HBV, suggesting the necessity for additional host factors for efficient infection. We also generated transgenic organoids harboring integrated HBV, representing a long-term culture system also suitable for viral production and the study of HBV transcription. Finally, we generated HBV-infected patient-derived liver organoids from non-tumor cirrhotic tissue of explants from liver transplant patients. Interestingly, transcriptomic analysis of patient-derived liver organoids indicated the presence of an aberrant early cancer gene signature, which clustered with the hepatocellular carcinoma (HCC) cohort on The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset and away from healthy liver tissue, and may provide invaluable novel biomarkers for the development of HCC and surveillance in HBV-infected patients.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B/virology , Liver Neoplasms/virology , Organoids/virology , Hep G2 Cells , Hepatitis B/complications , Hepatitis B virus/pathogenicity , Humans , Liver/pathology , Liver/virology , Living Donors , Models, Biological , Virus Replication
14.
mSphere ; : e0018021, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34190583

ABSTRACT

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly during the first months of 2020 and continues to expand in multiple areas across the globe. Molecular epidemiology has provided an added value to traditional public health tools by identifying SARS-CoV-2 clusters or providing evidence that clusters based on virus sequences and contact tracing are highly concordant. Our aim was to infer the levels of virus importation and to estimate the impact of public health measures related to travel restrictions to local transmission in Greece. Our phylogenetic and phylogeographic analyses included 389 full-genome SARS-CoV-2 sequences collected during the first 7 months of the pandemic in Greece and a random collection in five replicates of 3,000 sequences sampled globally, as well as the best hits to our data set identified by BLAST. Phylogenetic trees were reconstructed by the maximum likelihood method, and the putative source of SARS-CoV-2 infections was inferred by phylogeographic analysis. Phylogenetic analyses revealed the presence of 89 genetically distinct viruses identified as independent introductions into Greece. The proportion of imported strains was 41%, 11.5%, and 8.8% during the three periods of sampling, namely, March (no travel restrictions), April to June (strict travel restrictions), and July to September (lifting of travel restrictions based on thorough risk assessment), respectively. The results of phylogeographic analysis were confirmed by a Bayesian approach. Our findings reveal low levels of onward transmission from imported cases during summer and underscore the importance of targeted public health measures that can increase the safety of international travel during a pandemic. IMPORTANCE Our study based on current state-of-the-art molecular epidemiology methods suggests that virus screening and public health measures after the lifting of travel restrictions prevented SARS-CoV-2 onward transmission from imported cases during summer 2020 in Greece. These findings provide important data on the efficacy of targeted public health measures and have important implications regarding the safety of international travel during a pandemic. Our results can provide a roadmap about prevention policy in the future regarding the reopening of borders in the presence of differences in vaccination coverage, the circulation of the virus, and the presence of newly emergent variants across the globe.

15.
Rheumatology (Oxford) ; 60(10): 4910-4919, 2021 10 02.
Article in English | MEDLINE | ID: mdl-33493315

ABSTRACT

OBJECTIVES: Both innate and adaptive immune responses are reportedly increased in Behçet's disease (BD), a chronic, relapsing systemic vasculitis lying at the intersection between autoinflammation and autoimmunity. To further study pathophysiologic molecular mechanisms operating in BD, we searched for transcriptome-wide changes in blood mononuclear cells from these patients. METHODS: We performed 3' mRNA next-generation sequencing-based genome-wide transcriptional profiling followed by analysis of differential expression signatures, Kyoto Encyclopedia of Genes and Genomes pathways, GO biological processes and transcription factor signatures. RESULTS: Differential expression analysis clustered the transcriptomes of 13 patients and one healthy subject separately from those of 10 healthy age/gender-matched controls and one patient. Among the total of 17 591 expressed protein-coding genes, 209 and 31 genes were significantly upregulated and downregulated, respectively, in BD vs controls by at least 2-fold. The most upregulated genes comprised an abundance of CC- and CXC-chemokines. Remarkably, the 5 out of top 10 upregulated biological processes involved leucocyte recruitment to peripheral tissues, especially for neutrophils. Moreover, NF-kB, TNF and IL-1 signalling pathways were prominently enhanced in BD, while transcription factor activity analysis suggested that the NF-kB p65/RELA subunit action underlies the observed differences in the BD transcriptome. CONCLUSION: This RNA-sequencing analysis in peripheral blood mononuclear cells derived from patients with BD does not support a major pathogenetic role for adaptive immunity-driven mechanisms, but clearly points to the action of aberrant innate immune responses with a central role played by upregulated neutrophil chemotaxis.


Subject(s)
Behcet Syndrome/immunology , Chemotaxis, Leukocyte , Leukocytes, Mononuclear/pathology , Neutrophils/pathology , Adult , Behcet Syndrome/pathology , Case-Control Studies , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Neutrophils/metabolism , Transcription Factors/metabolism , Transcriptome
17.
Nat Immunol ; 21(9): 1058-1069, 2020 09.
Article in English | MEDLINE | ID: mdl-32719520

ABSTRACT

Innate T cells, including invariant natural killer T (iNKT) and mucosal-associated innate T (MAIT) cells, are a heterogeneous T lymphocyte population with effector properties preprogrammed during their thymic differentiation. How this program is initiated is currently unclear. Here, we show that the transcription factor BCL-6 was transiently expressed in iNKT cells upon exit from positive selection and was required for their proper development beyond stage 0. Notably, development of MAIT cells was also impaired in the absence of Bcl6. BCL-6-deficient iNKT cells had reduced expression of genes that were associated with the innate T cell lineage, including Zbtb16, which encodes PLZF, and PLZF-targeted genes. BCL-6 contributed to a chromatin accessibility landscape that was permissive for the expression of development-related genes and inhibitory for genes associated with naive T cell programs. Our results revealed new functions for BCL-6 and illuminated how this transcription factor controls early iNKT cell development.


Subject(s)
Chromatin/metabolism , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , Cell Differentiation , Cells, Cultured , Clonal Selection, Antigen-Mediated , Gene Expression Regulation, Developmental , Immunity, Innate , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Promyelocytic Leukemia Zinc Finger Protein/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
19.
Noncoding RNA Res ; 3(2): 42-53, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30159439

ABSTRACT

The WNT/ß-catenin signaling pathway controls a plethora of biological processes throughout animal development and adult life. Because of its fundamental role during animal lifespan, the WNT pathway is subject to strict positive and negative multi-layered regulation, while its aberrant activity causes a wide range of pathologies, including cancer. At present, despite the inroads into the molecules involved in WNT-mediated transcriptional responses, the fine-tuning of WNT pathway activity and the totality of its target genes have not been fully elucidated. Over the past few years, long non-coding RNAs (lncRNAs), RNA transcripts longer that 200nt that do not code for proteins, have emerged as significant transcriptional regulators. Recent studies show that lncRNAs can modulate WNT pathway outcome by affecting gene expression through diversified mechanisms, from the transcriptional to post-translational level. In this review, we selectively discuss those lncRNA-mediated mechanisms we believe the most important to WNT pathway modulation.

SELECTION OF CITATIONS
SEARCH DETAIL