Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6345, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816714

ABSTRACT

The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Phosphotyrosine , Ligands , src Homology Domains
2.
Curr Opin Struct Biol ; 79: 102534, 2023 04.
Article in English | MEDLINE | ID: mdl-36804675

ABSTRACT

Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.


Subject(s)
Biology , Proteins , Cryoelectron Microscopy , Proteins/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy
3.
RNA ; 28(5): 742-755, 2022 05.
Article in English | MEDLINE | ID: mdl-35210358

ABSTRACT

Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational mechanisms. We have recently shown that the small, noncoding vault RNA1-1 negatively riboregulates p62 oligomerization in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerization are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and we identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.


Subject(s)
Arginine , Lysine , Autophagy/genetics , RNA, Bacterial , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
4.
J Chem Inf Model ; 61(12): 5726-5733, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34843238

ABSTRACT

Nuclear magnetic resonance (NMR) is an effective, commonly used experimental approach to screen small organic molecules against a protein target. A very popular method consists of monitoring the changes of the NMR chemical shifts of the protein nuclei upon addition of the small molecule to the free protein. Multidimensional NMR experiments allow the interacting residues to be mapped along the protein sequence. A significant amount of human effort goes into manually tracking the chemical shift variations, especially when many signals exhibit chemical shift changes and when many ligands are tested. Some computational approaches to automate the procedure are available, but none of them as a web server. Furthermore, some methods require the adoption of a fairly specific experimental setup, such as recording a series of spectra at increasing small molecule:protein ratios. In this work, we developed a tool requesting a minimal amount of experimental data from the user, implemented it as an open-source program, and made it available as a web application. Our tool compares two spectra, one of the free protein and one of the small molecule:protein mixture, based on the corresponding peak lists. The performance of the tool in terms of correct identification of the protein-binding regions has been evaluated on different protein targets, using experimental data from interaction studies already available in the literature. For a total of 16 systems, our tool achieved between 79% and 100% correct assignments, properly identifying the protein regions involved in the interaction.


Subject(s)
Algorithms , Proteins , Amino Acid Sequence , Humans , Ligands , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
5.
RNA ; 27(10): 1173-1185, 2021 10.
Article in English | MEDLINE | ID: mdl-34215685

ABSTRACT

RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.


Subject(s)
Drosophila Proteins/metabolism , Dystrophin-Associated Proteins/metabolism , Microtubule-Associated Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Thioredoxins/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Binding Sites , Cloning, Molecular , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Dystrophin-Associated Proteins/chemistry , Dystrophin-Associated Proteins/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Microtubules/ultrastructure , Models, Molecular , Ovary/cytology , Ovary/metabolism , Poly U/chemistry , Poly U/genetics , Poly U/metabolism , Protein Binding , RNA/chemistry , RNA/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thioredoxins/chemistry , Thioredoxins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
6.
Biol Chem ; 400(11): 1443-1464, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31120853

ABSTRACT

TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.


Subject(s)
RNA/metabolism , Ubiquitin-Protein Ligases/classification , Ubiquitin-Protein Ligases/metabolism , Binding Sites , Humans , RNA/chemistry , Ubiquitin-Protein Ligases/chemistry
7.
Nat Commun ; 9(1): 1820, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739942

ABSTRACT

RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.


Subject(s)
Transcription Factors/antagonists & inhibitors , Transcription Factors/immunology , Tripartite Motif Proteins/antagonists & inhibitors , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/immunology , Amino Acid Sequence , Cells, Cultured , DEAD Box Protein 58/immunology , HEK293 Cells , Humans , Interferons/biosynthesis , Protein Binding , Protein Domains , Protein Multimerization , RNA, Viral/immunology , Receptors, Immunologic , Signal Transduction , Transcription Factors/chemistry , Tripartite Motif Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
8.
Front Mol Neurosci ; 10: 140, 2017.
Article in English | MEDLINE | ID: mdl-28553201

ABSTRACT

Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

SELECTION OF CITATIONS
SEARCH DETAIL