Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters










Publication year range
1.
Biochemistry ; 63(8): 1038-1050, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38577885

ABSTRACT

The ethylene-forming enzyme (EFE) is an Fe(II), 2-oxoglutarate (2OG), and l-arginine (l-Arg)-dependent oxygenase that either forms ethylene and three CO2/bicarbonate from 2OG or couples the decarboxylation of 2OG to C5 hydroxylation of l-Arg. l-Arg binds with C5 toward the metal center, causing 2OG to change from monodentate to chelate metal interaction and OD1 to OD2 switch of D191 metal coordination. We applied anaerobic UV-visible spectroscopy, X-ray crystallography, and computational approaches to three EFE systems with high-resolution structures. The ineffective l-Arg analogue l-canavanine binds to the EFE with O5 pointing away from the metal center while promoting chelate formation by 2OG but fails to switch the D191 metal coordination from OD1 to OD2. Substituting alanine for R171 that interacts with 2OG and l-Arg inactivates the protein, prevents metal chelation by 2OG, and weakens l-Arg binding. The R171A EFE had electron density at the 2OG binding site that was identified by mass spectrometry as benzoic acid. The substitution by alanine of Y306 in the EFE, a residue 12 Å away from the catalytic metal center, generates an interior cavity that leads to multiple local and distal structural changes that reduce l-Arg binding and significantly reduce the enzyme activity. Flexibility analyses revealed correlated and anticorrelated motions in each system, with important distinctions from the wild-type enzyme. In combination, the results are congruent with the currently proposed enzyme mechanism, reinforce the importance of metal coordination by OD2 of D191, and highlight the importance of the second coordination sphere and longer range interactions in promoting EFE activity.


Subject(s)
Canavanine , Ferrous Compounds , Lyases , Ferrous Compounds/metabolism , Binding Sites , Alanine , Ketoglutaric Acids/metabolism
2.
Nature ; 626(8000): 852-858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326608

ABSTRACT

Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.


Subject(s)
Acyltransferases , Amidohydrolases , Bile Acids and Salts , Clostridium perfringens , Gastrointestinal Microbiome , Animals , Humans , Mice , Acyltransferases/chemistry , Acyltransferases/metabolism , Alleles , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acids/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bariatric Surgery , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Catalytic Domain , Clostridium perfringens/enzymology , Clostridium perfringens/metabolism , Feces/chemistry , Gallbladder/metabolism , Gastrointestinal Microbiome/physiology , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Liver/metabolism , Taurocholic Acid/metabolism
3.
Enzymes ; 54: 71-105, 2023.
Article in English | MEDLINE | ID: mdl-37945178

ABSTRACT

Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.


Subject(s)
Iron , Oxygenases
4.
Biochemistry ; 62(21): 3096-3104, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37831946

ABSTRACT

LarB catalyzes the first step of biosynthesis for the nickel-pincer nucleotide cofactor by converting nicotinic acid adenine dinucleotide (NaAD) to AMP and pyridinium-3,5-biscarboxylic acid mononucleotide (P2CMN). Prior studies had shown that LarB uses CO2 for substrate carboxylation and reported the structure of a Lactiplantibacillus plantarum LarB·NAD+ complex, revealing a covalent linkage between Cys221 and C4 of the pyridine ring. This interaction was proposed to promote C5 carboxylation, with C5-carboxylated-NaAD suggested to activate magnesium-bound water, leading to phosphoanhydride hydrolysis. Here, we extended the analysis of wild-type LarB by using ultraviolet-visible spectroscopy to obtain additional evidence for cysteinyl side chain attachment to the ring of NAD+, thus demonstrating that this linkage is not a crystallization artifact. Using the S127A variant of L. plantarum LarB, a form of the enzyme with a reduced rate of NaAD hydrolysis, we examined its interaction with the authentic substrate. The intermediate arising from C5 carboxylation of NaAD, dinicotinic acid adenine dinucleotide (DaAD), was identified by using mass spectrometry. S127A LarB exhibited spectroscopic evidence of a Cys221-NAD+ adduct, but a covalent enzyme-NaAD linkage was not detectable. We determined the S127A LarB·NaAD structure, providing new insights into the enzyme mechanism, and tentatively identified the position and mode of CO2 binding. The crystal structure revealed the location of the side chain for Glu180, which was previously disordered, but showed that it is not well positioned to abstract the C5 proton in the adduct species to restore aromaticity as Cys221 is expelled. Based on these combined results, we propose a revised catalytic mechanism of LarB..


Subject(s)
NAD , Nickel , NAD/metabolism , Nickel/chemistry , Carbon Dioxide , Nucleotides/metabolism , Catalysis , Crystallography, X-Ray
5.
ACS Catal ; 13(2): 1441-1448, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-37886035

ABSTRACT

The nickel-pincer nucleotide (NPN) cofactor discovered in lactate racemase from Lactiplantibacillus plantarum (LarALp) is essential for the activities of racemases/epimerases in the highly diverse LarA superfamily. Prior mechanistic studies have established a proton-coupled hydride-transfer mechanism for LarALp, but direct evidence showing that hydride attacks the C4 atom in the pyridinium ring of NPN has been lacking. Here, we show that sodium borohydride (NaBH4) irreversibly inactivates LarALp accompanied by a rapid color change of the enzyme. The altered ultraviolet-visible spectra during NaBH4 titration supported hydride transfer to C4 of NPN, and the concomitant Ni loss unraveled by mass spectrometry experiments accounted for the irreversible inactivation. High resolution structures of LarALp revealed a substantially weakened C-Ni bond in the metastable sulfite-NPN adduct where the NPN cofactor is in the reduced state. These findings allowed us to propose a mechanism of LarALp inactivation by NaBH4 that provides key insights into the enzyme-catalyzed reaction and sheds light on the reactivity of small molecule NPN mimetics.

6.
RSC Chem Biol ; 4(9): 635-646, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37654506

ABSTRACT

This review summarizes the structures, biochemical properties, and mechanisms of two major biological sources of ethylene, the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). EFE is found in selected bacteria and fungi where it catalyzes two reactions: (1) the oxygen-dependent conversion of 2-oxoglutarate (2OG) to ethylene plus three molecules of CO2/bicarbonate and (2) the oxidative decarboxylation of 2OG while transforming l-arginine to guanidine and l-Δ1-pyrroline-5-carboxylic acid. ACCO is present in plants where it makes the plant hormone by transforming ACC, O2, and an external reductant to ethylene, HCN, CO2, and water. Despite catalyzing distinct chemical reactions, EFE and ACCO are related in sequence and structure, and both enzymes require Fe(ii) for their activity. Advances in our understanding of EFE, derived from both experimental and computational approaches, have clarified how this enzyme catalyzes its dual reactions. Drawing on the published mechanistic studies of ACCO and noting the parallels between this enzyme and EFE, we propose a novel reaction mechanism for ACCO.

7.
Methods Enzymol ; 685: 341-371, 2023.
Article in English | MEDLINE | ID: mdl-37245907

ABSTRACT

Cofactors are essential components of numerous enzymes, therefore their characterization by structural, biophysical, and biochemical approaches is crucial for understanding the resulting catalytic and regulatory mechanisms. In this chapter, we present a case study of a recently discovered cofactor, the nickel-pincer nucleotide (NPN), by demonstrating how we identified and thoroughly characterized this unprecedented nickel-containing coenzyme that is tethered to lactase racemase from Lactiplantibacillus plantarum. In addition, we describe how the NPN cofactor is biosynthesized by a panel of proteins encoded in the lar operon and describe the properties of these novel enzymes. Comprehensive protocols for conducting functional and mechanistic studies of NPN-containing lactate racemase (LarA) and the carboxylase/hydrolase (LarB), sulfur transferase (LarE), and metal insertase (LarC) used for NPN biosynthesis are provided for potential applications towards characterizing enzymes in the same or homologous families.


Subject(s)
Coenzymes , Nickel , Humans , Coenzymes/metabolism , Nickel/chemistry , Nucleotides/chemistry , Racemases and Epimerases/genetics
8.
Phys Chem Chem Phys ; 25(19): 13772-13783, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37159254

ABSTRACT

The non-heme Fe(II) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and L-Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the L-Arg hydroxylation activity. In this study, we show that the two L-Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe-O bond in the EFE·Fe(III)·OO-˙·2OG·L-Arg complex can switch the EFE reactivity between L-Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing L-Arg hydroxylation.


Subject(s)
Arginine , Ferric Compounds , Hydroxylation , Arginine/chemistry , Ethylenes/chemistry
9.
Chemistry ; 29(24): e202300854, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37009811

ABSTRACT

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes' conformations upon binding. Read the full text of the article at 10.1002/chem.202300138.


Subject(s)
Histone Demethylases , Ketoglutaric Acids , Humans , Histone Demethylases/metabolism , Ketoglutaric Acids/metabolism , Oxygenases , Oxygen , Ferrous Compounds/metabolism , Transcription Factors
10.
Chemistry ; 29(24): e202300138, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36701641

ABSTRACT

This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme FeII /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line FeIII -OO⋅- intermediate in PHF8 and the off-line FeIII -OO⋅- intermediate in EFE.


Subject(s)
Histone Demethylases , Oxygenases , Ketoglutaric Acids/chemistry , Oxygen , Ferric Compounds , Ferrous Compounds/metabolism , Ethylenes
11.
Biometals ; 36(2): 303-313, 2023 04.
Article in English | MEDLINE | ID: mdl-35182264

ABSTRACT

The LarA superfamily consists of nickel-dependent enzymes catalyzing racemization/epimerization reactions using a variety of α-hydroxy acids. The first-characterized LarA, a lactate racemase from Lactobacillus plantarum, led to the discovery of the nickel-pincer nucleotide (NPN) cofactor that is utilized by family members with alternative substrates, including malate racemase from Thermoanaerobacterium thermosaccharolyticum (Mar2). In this work, a higher resolution crystal structure of Mar2 was obtained with better data quality that revealed new structural and dynamic characteristics of the protein. A model of the Mar2 structure with bound cofactor and substrate was generated to uncover the common and the unique features among two distinct subgroups in the LarA superfamily. In addition, structure-guided mutational studies were used to examine the importance of residues that are modeled to interact with NPN and to explore which residues were critical for conferring specificity for malate. In particular, substitution of two residues involved in substrate binding in Mar2 to match the corresponding residues in LarA led to the acquisition of low levels of lactate racemase activity. Of additional interest, the substrate spectrum was expanded to include tartrate, an analog of malate. These new findings will help to better understand structure-function relationships of many other LarA homologs that are broadly distributed in bacterial and archaeal species.


Subject(s)
Malates , Nickel , Nickel/chemistry , Racemases and Epimerases/genetics , Bacterial Proteins/metabolism
12.
Crit Rev Biochem Mol Biol ; 57(5-6): 461-476, 2022.
Article in English | MEDLINE | ID: mdl-36403141

ABSTRACT

Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.


Subject(s)
Coenzymes , Sulfur , Sulfur/metabolism , Coenzymes/metabolism , Thiamine , Iron/chemistry
13.
Biochem Soc Trans ; 50(4): 1187-1196, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35960008

ABSTRACT

The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.


Subject(s)
Lactobacillus plantarum , Nickel , Coenzymes/chemistry , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Nickel/chemistry , Nickel/metabolism , Nucleotides/metabolism , Sulfur/metabolism
14.
J Biol Chem ; 298(7): 102131, 2022 07.
Article in English | MEDLINE | ID: mdl-35700827

ABSTRACT

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Subject(s)
Iron-Sulfur Proteins , Thermotoga maritima , Coenzymes/metabolism , Cysteine/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Iron-Sulfur Proteins/metabolism , Nickel/metabolism , Nucleotides/metabolism , Sulfides/metabolism , Sulfur/metabolism , Thermotoga maritima/genetics , Thermotoga maritima/metabolism
15.
Metallomics ; 14(3)2022 03 25.
Article in English | MEDLINE | ID: mdl-35225337

ABSTRACT

LarC catalyzes the CTP-dependent insertion of nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide (P2TMN), the final biosynthetic step for generating the nickel-pincer nucleotide (NPN) enzyme cofactor. In this study, we characterized a LarC homolog from Moorella thermoacetica (LarCMt) and characterized selected properties of the protein. We ruled out the hypothesis that enzyme inhibition by its product pyrophosphate accounts for its apparent single-turnover activity. Most notably, we identified a cytidinylylated-substrate intermediate that is formed during the reaction of LarCMt. Selected LarCMt variants with substitutions at the predicted CTP-binding site retained substantial amounts of activity, but exhibited greatly reduced levels of the CMP-P2TMN intermediate. In contrast, enhanced amounts of the CMP-P2TMN intermediate were generated when using LarCMt from cells grown on medium without supplemental nickel. On the basis of these results, we propose a functional role for CTP in the unprecedented nickel-insertase reaction during NPN biosynthesis.


Subject(s)
Moorella , Nickel , Bacterial Proteins/metabolism , Moorella/metabolism , Nickel/metabolism , Racemases and Epimerases
16.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548397

ABSTRACT

Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.


Subject(s)
Cysteine/chemistry , Hydrolases/metabolism , Lactobacillus plantarum/enzymology , Nickel/metabolism , Nucleotides/biosynthesis , Pyridines/chemistry , Racemases and Epimerases/metabolism , Carboxy-Lyases , Catalysis , Crystallography, X-Ray , Hydrolases/chemistry , Hydrolysis , Models, Molecular , Protein Conformation , Racemases and Epimerases/chemistry , Substrate Specificity
17.
Coord Chem Rev ; 4482021 Dec 01.
Article in English | MEDLINE | ID: mdl-35250039

ABSTRACT

Conventional ureases possess dinuclear nickel active sites that are oxygen-stable and require a set of accessory proteins for metallocenter biosynthesis. By contrast, oxygen-labile ureases have active sites containing dual ferrous ions and lack a requirement for maturation proteins. The structures of the two types of urease are remarkably similar, with an active site architecture that includes two imidazoles and a carboxylate ligand coordinated to one metal, two imidazoles coordinated to the second metal, and a metal-bridging carbamylated lysine ligand. The electronic spectrum of the diferric form of the enzyme resembles that of methemerythrin. Resonance Raman spectroscopic analyses confirm the presence of a µ-oxo ligand and indicate the presence of one or more terminal solvent ligands.

18.
Appl Magn Reson ; 52(8): 971-994, 2021 Aug.
Article in English | MEDLINE | ID: mdl-35250178

ABSTRACT

Proton Hyperfine Sublevel Correlation (1H-HYSCORE) experiments have been used to probe the ligation structure of the Fe(II) active site of taurine:2-oxoglutarate dioxygenase (TauD), a non-heme Fe(II) hydroxylase. To facilitate Electron Paramagnetic Resonance (EPR) experiments, Fe(II) derivatives of the enzyme were studied using nitric oxide as a substitute for molecular oxygen. The addition of NO to the enzyme yields an S = 3/2 {FeNO}7 paramagnetic center characterized by nearly axial EPR spectra with g⊥ = 4 and g|| = 2. Using results from (i) an X-ray crystallographic study of TauD crystallized under anaerobic conditions in the presence of both cosubstrate 2-oxoglutarate and substrate taurine, (ii) a published theoretical description of the {FeNO}7 derivative of this form of the enzyme, and (iii) previous 2H-Electron Spin Echo Envelope Modulation (ESEEM) studies, we were able to assign the proton cross peaks detected in orientation-selected 1H-HYSCORE spectra. Discrete contributions from the protons of two coordinated histidine ligands were resolved. If substrate taurine is absent from the complex, orientation-selective HYSCORE spectra show cross peaks that are less resolved and when combined with information obtained from continuous wave EPR, support an alternate binding scheme for 2-oxoglutarate. HYSCORE studies of TauD in the absence of 2-oxoglutarate show additional 1H cross peaks that can be assigned to two distinct bound water molecules. In addition, 1H and 14N cross peaks that arise from the coordinated histidine side chains show a change in NO coordination for this species. For all of the TauD species, 1H hyperfine couplings and their orientations are sensitive to the detailed electronic structure of the {FeNO}7 center.

19.
ChemCatChem ; 12(17): 4242-4254, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-33072225

ABSTRACT

At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes.

20.
Sci Rep ; 10(1): 18123, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093595

ABSTRACT

Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L- and D-lactate, is composed of the LarA protein and a nickel-containing cofactor, the nickel-pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many different enzymes. We overexpressed and purified 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of different substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α-hydroxyglutarate racemase, two D-gluconate 2-epimerases, and one short-chain aliphatic α-hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D-gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α-hydroxyacid racemases and epimerases, widely expanding the scope of NPN-dependent enzymes.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Hydroxy Acids/chemistry , Nickel/metabolism , Nucleotides/metabolism , Racemases and Epimerases/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Nickel/chemistry , Nucleotides/chemistry , Protein Conformation , Racemases and Epimerases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...