Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Subcell Biochem ; 104: 181-205, 2024.
Article in English | MEDLINE | ID: mdl-38963488

ABSTRACT

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Subject(s)
DNA, Viral , Viral Proteins , DNA, Viral/genetics , DNA, Viral/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Viral Genome Packaging/physiology , DNA Packaging , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/metabolism , Genome, Viral
2.
Nucleic Acids Res ; 51(13): 7025-7035, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37293963

ABSTRACT

Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.


Subject(s)
Bacteriophages , Virus Assembly , Bacteriophages/genetics , Bacteriophages/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , DNA Packaging , DNA, Viral/genetics , Endodeoxyribonucleases/metabolism
3.
Nature ; 617(7960): 409-416, 2023 05.
Article in English | MEDLINE | ID: mdl-37138077

ABSTRACT

CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals1-4. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the 'crass fold', that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.


Subject(s)
DNA Viruses , Intestines , Viral Proteins , Virion , Humans , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA Viruses/metabolism , DNA Viruses/ultrastructure , Virion/chemistry , Virion/metabolism , Virion/ultrastructure , Virus Assembly , Intestines/microbiology , Intestines/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Protein Unfolding , Protein Folding
4.
J Mol Biol ; 433(8): 166875, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33556408

ABSTRACT

The coronavirus nucleocapsid protein (N) controls viral genome packaging and contains numerous phosphorylation sites located within unstructured regions. Binding of phosphorylated SARS-CoV N to the host 14-3-3 protein in the cytoplasm was reported to regulate nucleocytoplasmic N shuttling. All seven isoforms of the human 14-3-3 are abundantly present in tissues vulnerable to SARS-CoV-2, where N can constitute up to ~1% of expressed proteins during infection. Although the association between 14-3-3 and SARS-CoV-2 N proteins can represent one of the key host-pathogen interactions, its molecular mechanism and the specific critical phosphosites are unknown. Here, we show that phosphorylated SARS-CoV-2 N protein (pN) dimers, reconstituted via bacterial co-expression with protein kinase A, directly associate, in a phosphorylation-dependent manner, with the dimeric 14-3-3 protein, but not with its monomeric mutant. We demonstrate that pN is recognized by all seven human 14-3-3 isoforms with various efficiencies and deduce the apparent KD to selected isoforms, showing that these are in a low micromolar range. Serial truncations pinpointed a critical phosphorylation site to Ser197, which is conserved among related zoonotic coronaviruses and located within the functionally important, SR-rich region of N. The relatively tight 14-3-3/pN association could regulate nucleocytoplasmic shuttling and other functions of N via occlusion of the SR-rich region, and could also hijack cellular pathways by 14-3-3 sequestration. As such, the assembly may represent a valuable target for therapeutic intervention.


Subject(s)
14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Amino Acid Sequence , Binding Sites/genetics , Coronavirus Nucleocapsid Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Escherichia coli , Humans , Mutation , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA, Viral/metabolism , Substrate Specificity
5.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: mdl-32887977

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...