Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Immunol Cell Biol ; 100(4): 250-266, 2022 04.
Article in English | MEDLINE | ID: mdl-35188985

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper-biased, spike-specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle-aged mice, with durable immune memory evident even in the presence of pre-existing vector immunity. Therefore, SCV-S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Subject(s)
COVID-19 , Vaccinia , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination
2.
Eur J Med Chem ; 214: 113248, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33571827

ABSTRACT

CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase 8/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Article in English | MEDLINE | ID: mdl-33439897

ABSTRACT

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Subject(s)
Genetic Vectors/administration & dosage , Immunity, Innate/immunology , Injection Site Reaction/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccinia/immunology , Zika Virus Infection/immunology , Animals , Female , Genetic Vectors/genetics , Genome, Viral , Mice , Mice, Inbred C57BL , RNA-Seq , Vaccines, Synthetic/immunology , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/isolation & purification , Vaccinology , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
4.
J Mol Biol ; 433(1): 166596, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32693108

ABSTRACT

There are many unanswered questions surrounding the function of immune cells and how they interact with the reproductive system to support successful pregnancy or contribute to pregnancy pathologies. While the role of immune cells such as uterine natural killer and dendritic cells, and more recently regulatory T cells has been established, the role of another major immune cell population, the B cell, and particularly the regulatory B cells, is relatively poorly understood. This review outlines what is known about B-cell subsets in the context of pregnancy, what constitutes a regulatory B cell and what role they may play, particularly during early pregnancy. Lastly, we discuss why immunotherapies for the treatment of pregnancy disorders is not widely progressed clinically and speculate on the potential of functional regulatory B cells as the basis of novel immunotherapeutic approaches for the treatment of immune-based pregnancy pathologies.


Subject(s)
B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Female , Humans , Immune Tolerance , Immunity, Humoral , Immunomodulation , Immunotherapy , Phenotype , Pregnancy , Translational Research, Biomedical
5.
NPJ Vaccines ; 5(1): 44, 2020.
Article in English | MEDLINE | ID: mdl-32550013

ABSTRACT

The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.

6.
Front Cell Dev Biol ; 8: 226, 2020.
Article in English | MEDLINE | ID: mdl-32363191

ABSTRACT

INTRODUCTION: High Mobility Group Box Protein 1 (HMGB1) is a DNA-binding protein that exerts inflammatory or pro-repair effects upon translocation from the nucleus. We postulate aberrant HMGB1 expression in immune-mediated necrotising myopathy (IMNM). METHODS: Herein, we compare HMGB1 expression (serological and sarcoplasmic) in patients with IMNM with that of other myositis subtypes using immunohistochemistry and ELISA. RESULTS: IMNM (n = 62) and inclusion body myositis (IBM, n = 14) patients had increased sarcoplasmic HMGB1 compared with other myositis patients (n = 46). Sarcoplasmic HMGB1 expression correlated with muscle weakness and histological myonecrosis, inflammation, regeneration and autophagy. Serum HMGB1 levels were elevated in patients with IMNM, dermatomyositis and polymositis, and those myositis patients with extramuscular inflammatory features. DISCUSSION: Aberrant HMGB1 expression occurs in myositis patients and correlates with weakness. A unique expression profile of elevated sarcoplasmic and serum HMGB1 was detected in IMNM.

7.
Vaccines (Basel) ; 8(2)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380760

ABSTRACT

Chikungunya virus (CHIKV), Ross River virus (RRV), o'nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.

8.
Am J Reprod Immunol ; 84(2): e13260, 2020 08.
Article in English | MEDLINE | ID: mdl-32365239

ABSTRACT

PROBLEM: Autism spectrum disorder (ASD)-like phenotypes in murine models are linked to elevated pro-inflammatory cytokine profiles caused by maternal immune activation (MIA), but whether MIA alters the immune response in the offspring remains unclear. METHOD OF STUDY: Polyinosinic:polycytidylic acid (poly:[IC]) was used to induce MIA in immunocompetent and control TLR3-deficient pregnant mice, and cytokine levels were measured in maternal and foetal organs. Furthermore, cytokines and behaviour responses were tested after challenge with lipopolysaccharide in 7-day-old and adult mice. RESULTS: MIA induced on E12 resulted in changes in the cytokine expression profile in maternal and foetal organs and correlated with TNFα and IL-18 dysregulation in immune organs and brains from neonatal mice born to MIA-induced dams. Such changes further correlated with altered behavioural responses in adulthood. CONCLUSION: MIA induced by pathogens during pregnancy can interfere with the development of the foetal immune and nervous systems leading to dysfunctional immune responses and behaviour in offspring.


Subject(s)
Autism Spectrum Disorder/immunology , Immune System Diseases/immunology , Poly I-C/immunology , Pregnancy/immunology , Prenatal Exposure Delayed Effects/immunology , Virus Diseases/immunology , Animals , Autism Spectrum Disorder/psychology , Behavior, Animal , Child of Impaired Parents , Disease Models, Animal , Female , Humans , Immune System Diseases/psychology , Immunity , Immunity, Maternally-Acquired , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prenatal Exposure Delayed Effects/psychology , Toll-Like Receptor 3/genetics , Transcriptome/immunology , Virus Diseases/psychology
9.
Viruses ; 12(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32455939

ABSTRACT

White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid (poly(I:C)) or whole replicative murine cytomegalovirus (MCMV), could stimulate the expression of IL-10 in murine WAT using in vivo and ex vivo approaches. Our results showed that in vivo responses to systemic administration of poly(I:C) resulted in high levels of endogenously-produced IL-10 and IL-21 in WAT. In ex vivo WAT explants, a subset of B-cells increased their endogenous IL-10 expression in response to poly(I:C). Finally, MCMV replication in WAT explants resulted in decreased IL-10 levels, opposite to the effect seen with poly(I:C). Moreover, downregulation of IL-10 correlated with relatively lower number of Bregs. To our knowledge, this is the first report of IL-10 expression by WAT and WAT-associated B-cells in response to viral stimuli.


Subject(s)
Adipose Tissue, White/metabolism , Interleukin-10/metabolism , Interleukins/metabolism , Muromegalovirus/drug effects , Poly I-C/pharmacology , 3T3 Cells , Adipose Tissue, White/pathology , Animals , Cytokines/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 3/genetics
10.
Pharmaceutics ; 11(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698755

ABSTRACT

Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to utilize this property to develop a system to target anti-cancer drugs to lymphoid organs. We investigated, therefore, whether MPI could be used as a vehicle to deliver doxorubicin selectively, thereby reducing the toxicity of this antibiotic anthracycline drug. Doxorubicin was covalently attached to the surface of MPI using an acid-labile linkage to enable pH-controlled release. The MPI-doxorubicin conjugate was characterized using FTIR and SEM, confirming covalent attachment and indicating doxorubicin coupling had no obvious impact on the physical nanostructure, integrity, and cellular uptake of the MPI particles. To simulate the stability of the MPI-doxorubicin in vivo, it was stored in artificial lysosomal fluid (ALF, pH 4.5). Although the MPI-doxorubicin particles were still visible after 165 days in ALF, 53% of glycosidic bonds in the inulin particles were hydrolyzed within 12 days in ALF, reflected by the release of free glucose into solution. By contrast, the fructosidic bonds were much more stable. Drug release studies of the MPI-doxorubicin in vitro, demonstrated a successful pH-dependent controlled release effect. Confocal laser scanning microscopy studies and flow cytometric analysis confirmed that when incubated with live cells, MPI-doxorubicin was efficiently internalized by immune cells. An assay of cell metabolic activity demonstrated that the MPI carrier alone had no toxic effects on RAW 264.7 murine monocyte/macrophage-like cells, but exhibited anti-cancer effects against HCT116 human colon cancer cells. MPI-doxorubicin had a greater anti-cancer cell effect than free doxorubicin, particularly when at lower concentrations, suggesting a drug-sparing effect. This study establishes that MPI can be successfully modified with doxorubicin for chemotherapeutic drug delivery.

11.
Pharmaceutics ; 11(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661841

ABSTRACT

The use of particles for monocyte-mediated delivery could be a more efficient strategy and approach to achieve intracellular targeting and delivery of antitubercular drugs to host macrophages. In this study, the potential of inulin microparticles to serve as a drug vehicle in the treatment of chronic tuberculosis using a monocytes-mediated drug targeting approach was evaluated. Isoniazid (INH) was conjugated to inulin via hydrazone linkage in order to obtain a pH-sensitive inulin-INH conjugate. The conjugate was then characterized using proton nuclear magnetic resonance (1HNMR), Fourier transform infrared spectroscopy (FTIR) as well as in vitro, cellular uptake and intracellular Mycobacterium tuberculosis (Mtb) antibacterial efficacy. The acid-labile hydrazone linkage conferred pH sensitivity to the inulin-INH conjugate with ~95, 77 and 65% of the drug released after 5 h at pH 4.5, 5.2, and 6.0 respectively. Cellular uptake studies confirm that RAW 264.7 monocytic cells efficiently internalized the inulin conjugates into endocytic compartments through endocytosis. The intracellular efficacy studies demonstrate that the inulin conjugates possess a dose-dependent targeting effect against Mtb-infected monocytes. This was through efficient internalization and cleavage of the hydrazone bond by the acidic environment of the lysosome, which subsequently released the isoniazid intracellularly to the Mtb reservoir. These results clearly suggest that inulin conjugates can serve as a pH-sensitive intracellular drug delivery system for TB treatment.

12.
Exp Ther Med ; 18(5): 3271-3280, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31602200

ABSTRACT

Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.

13.
Am J Reprod Immunol ; 82(6): e13187, 2019 12.
Article in English | MEDLINE | ID: mdl-31487409

ABSTRACT

PROBLEM: A successful outcome to pregnancy is critically dependent on the initiation of maternal immune tolerance before embryo implantation. Cells of embryonic origin that come in contact with the uterine microenvironment can exert influence over the phenotype and function of immune cells to facilitate robust implantation; however, what influence they may have on B cells remains unknown. In this study, we investigate the effect of human trophoblast cells on B-cell phenotype and the subsequent effect on peri-implantation events. METHOD OF STUDY: We cultured purified human B cells with the first-trimester human trophoblast cell line Swan 71 to investigate trophoblast-B-cell interactions and utilized trophoblast spheroids in an in vitro implantation model of migration and invasion. RESULTS: Trophoblast-educated B cells or TE-B cells were found to consist of B cells in committed lineages such as plasmablasts and memory B cells, as well as increased proportions in subsets of CD24hi CD27+ regulatory B cells and CD19+ IL-10+ B cells. Conditioned media from the TE-B cells showed reduced production of pro-inflammatory cytokines that influenced the T-cell proliferation and cytokine production. Using trophoblast spheroids, we assessed the role of TE-B cells in trophoblast invasion and migration. Our results demonstrate a protective effect of TE-B-conditioned media against deleterious inflammation as evidenced by survival of the trophoblast spheroid in the presence of an immune assault and promotion of a migratory phenotype. CONCLUSION: We posit that trophoblast-mediated education of B cells leads to their acquisition of properties capable of modulating inflammation in the uterine environment during the peri-implantation period.


Subject(s)
B-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Trophoblasts/immunology , B-Lymphocytes, Regulatory/pathology , Cell Line , Coculture Techniques , Female , Humans , Immunologic Memory , Inflammation/immunology , Inflammation/pathology , T-Lymphocytes/pathology , Trophoblasts/pathology
14.
ACS Appl Mater Interfaces ; 11(31): 27615-27623, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31310498

ABSTRACT

The nature of the protein corona forming on biomaterial surfaces can affect the performance of implanted devices. This study investigated the role of surface chemistry and wettability on human serum-derived protein corona formation on biomaterial surfaces and the subsequent effects on the cellular innate immune response. Plasma polymerization, a substrate-independent technique, was employed to create nanothin coatings with four specific chemical functionalities and a spectrum of surface charges and wettability. The amount and type of protein adsorbed was strongly influenced by surface chemistry and wettability but did not show any dependence on surface charge. An enhanced adsorption of the dysopsonin albumin was observed on hydrophilic carboxyl surfaces while high opsonin IgG2 adsorption was seen on hydrophobic hydrocarbon surfaces. This in turn led to a distinct immune response from macrophages; hydrophilic surfaces drove greater expression of anti-inflammatory cytokines by macrophages, whilst surface hydrophobicity caused increased production of proinflammatory signaling molecules. These findings map out a unique relationship between surface chemistry, hydrophobicity, protein corona formation, and subsequent cellular innate immune responses; the potential outcomes of these studies may be employed to tailor biomaterial surface modifications, to modulate serum protein adsorption and to achieve the desirable innate immune response to implanted biomaterials and devices.


Subject(s)
Biocompatible Materials , Blood Proteins/chemistry , Immunity, Innate/drug effects , Macrophages/immunology , Protein Corona/chemistry , Adsorption , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , THP-1 Cells
15.
J Immunol ; 203(3): 647-657, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31243091

ABSTRACT

Regulatory T cells (Tregs) are essential for maternal tolerance in allogeneic pregnancy. In preeclampsia, Tregs are fewer and display aberrant phenotypes, particularly in the thymic Treg (tTreg) compartment, potentially because of insufficient priming to male partner alloantigens before conception. To investigate how tTregs as well as peripheral Tregs (pTregs) respond to male partner seminal fluid, Foxp3+CD4+ Tregs were examined in the uterus and uterus-draining lymph nodes in virgin estrus mice and 3.5 d postcoitum. Mating elicited 5-fold increases in uterine Tregs accompanied by extensive Treg proliferation in the uterus-draining lymph nodes, comprising 70% neuropilin 1+ tTregs and 30% neuropilin 1- pTregs. Proliferation marker Ki67 and suppressive competence markers Foxp3 and CTLA4 were induced after mating in both subsets, and Ki67, CTLA4, CD25, and GITR were higher in tTregs than in pTregs. Analysis by t-stochastic neighbor embedding confirmed phenotypically distinct tTreg and pTreg clusters, with the proportion of tTregs but not pTregs among CD4+ T cells expanding in response to seminal fluid. Bisulphite sequencing revealed increased demethylation of the Treg-specific demethylation region in the Foxp3 locus in tTregs but not pTregs after mating. These data show that tTregs and pTregs with distinct phenotypes both respond to seminal fluid priming, but the Foxp3 epigenetic signature is uniquely increased in tTregs. We conclude that reproductive tract tTregs as well as pTregs are sensitive to local regulation by seminal fluid, providing a candidate mechanism warranting evaluation for the potential to influence preeclampsia susceptibility in women.


Subject(s)
Forkhead Transcription Factors/metabolism , Semen/immunology , Sexual Behavior, Animal , T-Lymphocytes, Regulatory/immunology , Uterus/immunology , Animals , CTLA-4 Antigen/metabolism , Cell Proliferation/physiology , Epigenesis, Genetic , Female , Forkhead Transcription Factors/genetics , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Lymph Nodes/cytology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neuropilin-1/metabolism , Pre-Eclampsia/immunology , Pre-Eclampsia/pathology , Pregnancy , Thymus Gland/cytology , Uterus/cytology
16.
Pharmaceutics ; 11(5)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121836

ABSTRACT

The propensity of monocytes to migrate into sites of mycobacterium tuberculosis (TB) infection and then become infected themselves makes them potential targets for delivery of drugs intracellularly to the tubercle bacilli reservoir. Conventional TB drugs are less effective because of poor intracellular delivery to this bacterial sanctuary. This study highlights the potential of using semicrystalline delta inulin particles that are readily internalised by monocytes for a monocyte-based drug delivery system. Pyrazinoic acid was successfully attached covalently to the delta inulin particles via a labile linker. The formation of new conjugate and amide bond was confirmed using zeta potential, Proton Nuclear Magnetic Resonance (1HNMR) and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) confirmed that no significant change in size after conjugation which is an important parameter for monocyte targeting. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to establish the change in thermal properties. The analysis of in-vitro release demonstrated pH-triggered drug cleavage off the delta inulin particles that followed a first-order kinetic process. The efficient targeting ability of the conjugate for RAW 264.7 monocytic cells was supported by cellular uptake studies. Overall, our finding confirmed that semicrystalline delta inulin particles (MPI) can be modified covalently with drugs and such conjugates allow intracellular drug delivery and uptake into monocytes, making this system potentially useful for the treatment of TB.

17.
Front Immunol ; 10: 2899, 2019.
Article in English | MEDLINE | ID: mdl-31921160

ABSTRACT

A successful outcome to pregnancy is dependent on the ability of the maternal uterine microenvironment to regulate inflammation processes and establish maternal tolerance. Recently, B cells have been shown to influence pregnancy outcomes as aberrations in their numbers and functions are associated with obstetric complications. In this study, we aimed to comprehensively examine the population frequency and phenotypic profile of B cells over the course of murine pregnancy. Our results demonstrated a significant expansion in B cells within the uterus during the peri-implantation period, accompanied by alterations in B cell phenotype. Functional evaluation of uterine B cells purified from pregnant mice at day 5.5 post-coitus established their regulatory capacity as evidenced by effective suppression of proliferation and activation of syngeneic CD4+ T cells. Flow cytometric analysis revealed that the uterine B cell population has an expanded pool of IL-10-producing B cells bearing upregulated expression of co-stimulatory molecules CD80 and CD86 and activation marker CD27. Our investigations herein demonstrate that during the critical stages surrounding implantation, uterine B cells are amplified and phenotypically modified to act in a regulatory manner that potentially contributes toward the establishment of maternal immunological tolerance in early pregnancy.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Embryo Implantation/immunology , Pregnancy/immunology , Uterus/immunology , Animals , Antigens, CD/immunology , B-Lymphocytes, Regulatory/cytology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Female , Mice , Uterus/cytology
18.
Expert Rev Vaccines ; 17(10): 925-934, 2018 10.
Article in English | MEDLINE | ID: mdl-30300041

ABSTRACT

INTRODUCTION: With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED: Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY: Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.


Subject(s)
Genetic Vectors , Vaccinia virus/genetics , Viral Vaccines/administration & dosage , Animals , Humans , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Virus Diseases/prevention & control
19.
Article in English | MEDLINE | ID: mdl-29616197

ABSTRACT

Murine models of Salmonella enterica serovar Typhimurium infection are one of the commonest tools to study host-pathogen interactions during bacterial infections. Critically, the outcome of S. Typhimurium infection is impacted by the genetic background of the mouse strain used, with macrophages from C57BL/6 and BALB/c mice lacking the capacity to control intracellular bacterial replication. For this reason, the use of congenic strains, which mix the genetic backgrounds of naturally protected mouse strains with those of susceptible strains, has the capacity to significantly alter results and interpretation of S. Typhimurium infection studies. Here, we describe how macrophage knockout cell lines generated by CRISPR/Cas9 gene editing can help determine the contribution of background contaminations in the phenotypes of primary macrophages from congenic mice, on the outcome of S. Typhimurium infection studies. Our own experience illustrates how the CRISPR/Cas9 technology can be used to complement pre-existing knockout models, and shows that there is great merit in performing concurrent studies with both genetic models, to exclude unanticipated side-effects on host-pathogen interactions.


Subject(s)
Gene Editing , Salmonella Infections/genetics , Salmonella typhimurium/physiology , Animals , Animals, Congenic , CRISPR-Cas Systems , Female , Host-Pathogen Interactions , Humans , Macrophages/immunology , Macrophages/microbiology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology
20.
Nat Commun ; 9(1): 1230, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581442

ABSTRACT

Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The "Sementis Copenhagen Vector" (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR-/- mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR-/- mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR-/- mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced "shot burden" for these often co-circulating arboviruses.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/immunology , Genetic Vectors , Vaccinia virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/biosynthesis , CHO Cells , Chikungunya Fever/immunology , Chlorocebus aethiops , Cricetulus , Enzyme-Linked Immunosorbent Assay , Female , HeLa Cells , Humans , Male , Maternal-Fetal Exchange , Mice, Inbred C57BL , Pregnancy , Receptor, Interferon alpha-beta/genetics , Vero Cells , Viral Vaccines/administration & dosage , Zika Virus Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...