Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902502

ABSTRACT

Venous thrombus embolism (VTE) is common after polytrauma, both of which are considered significant contributors to poor outcomes and mortality. Traumatic brain injury (TBI) is recognized as an independent risk factor for VTE and one of the most common components of polytraumatic injuries. Few studies have assessed the impact of TBI on the development of VTE in polytrauma patients. This study sought to determine whether TBI further increases the risk for VTE in polytrauma patients. A retrospective, multi-center trial was performed from May 2020 to December 2021. The occurrence of venous thrombosis and pulmonary embolism from injury to 28 days after injury was observed. Of 847 enrolled patients, 220 (26%) developed DVT. The incidence of DVT was 31.9% (122/383) in patients with polytrauma with TBI (PT + TBI group), 22.0% (54/246) in patients with polytrauma without TBI (PT group), and 20.2% (44/218) in patients with isolated TBI (TBI group). Despite similar Glasgow Coma Scale scores, the incidence of DVT in the PT + TBI group was significantly higher than in the TBI group (31.9% vs. 20.2%, p < 0.01). Similarly, despite no difference in Injury Severity Scores between the PT + TBI and PT groups, the DVT rate was significantly higher in the PT + TBI group than in the PT group (31.9% vs. 22.0%, p < 0.01). Delayed anticoagulant therapy, delayed mechanical prophylaxis, older age, and higher D-dimer levels were independent predictive risk factors for DVT occurrence in the PT + TBI group. The incidence of PE within the whole population was 6.9% (59/847). Most patients with PE were in the PT + TBI group (64.4%, 38/59), and the PE rate was significantly higher in the PT + TBI group compared to the PT (p < 0.01) or TBI (p < 0.05) group. In conclusion, this study characterizes polytrauma patients at high risk for VTE occurrence and emphasizes that TBI markedly increases the incidence of DVT and PE in polytrauma patients. Delayed anticoagulant therapy and delayed mechanical prophylaxis were identified as the major risk factors for a higher incidence of VTE in polytrauma patients with TBI.

2.
J Clin Med ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431304

ABSTRACT

Background: Shock after traumatic injury is likely to be hypovolemic, but different types of shock (distributive shock, obstructive shock, or cardiogenic shock) can occur in combination, known as multifactorial shock. Multifactorial shock is a neglected area of study, and is only reported sporadically. Little is known about the incidence, characteristics, and outcomes of multifactorial shock after polytrauma. Methods: A retrospective, observational, multicenter study was conducted in four Level I trauma centers involving 1051 polytrauma patients from June 2020 to April 2022. Results: The mean Injury Severity Score (ISS) was 31.1, indicating a severely injured population. The most common type of shock in the early phase after polytrauma (≤48 h) is hypovolemic shock (83.2%), followed by distributive shock (14.4%), obstructive shock (8.7%), and cardiogenic shock (3.8%). In the middle phase after polytrauma (>48 h or ≤14 days), the most common type of shock is distributive shock (70.7%), followed by hypovolemic shock (27.2%), obstructive shock (9.9%), and cardiogenic shock (7.2%). Multifactorial shock accounted for 9.7% of the entire shock population in the early phase and 15.2% in the middle phase. In total, seven combinations of multifactorial shock were described. Patients with multifactorial shock have a significantly higher complication rate and mortality than those with single-factor shock. Conclusions: This study characterizes the incidence of various types of shock in different phases after polytrauma and emphasizes that different types of shock can occur simultaneously or sequentially in polytrauma patients. Multifactorial shock has a relatively high incidence and mortality in polytrauma patients, and trauma specialists should be alert to the possibility of their occurrence.

3.
Front Pharmacol ; 13: 944965, 2022.
Article in English | MEDLINE | ID: mdl-36034783

ABSTRACT

Objective: The aim of the research was to study the effect of azithromycin (AZM) in the treatment of MDR P. aeruginosa VAP combined with other antimicrobial therapies. Methods: The clinical outcomes were retrospectively collected and analyzed to elucidate the efficacy of different combinations involving azithromycin in the treatment of MDR-PA VAP. The minimal inhibitory concentration (MIC) of five drugs was measured by the agar dilution method against 27 isolates of MDR-PA, alone or in combination. Results: The incidence of VAP has increased approximately to 10.4% (961/9245) in 5 years and 18.4% (177/961) caused by P. aeruginosa ranking fourth. A total of 151 cases of MDR P. aeruginosa were included in the clinical retrospective study. Clinical efficacy results are as follows: meropenem + azithromycin (MEM + AZM) was 69.2% (9/13), cefoperazone/sulbactam + azithromycin (SCF + AZM) was 60% (6/10), and the combination of three drugs containing AZM was 69.2% (9/13). The curative effect of meropenem + amikacin (MEM + AMK) was better than that of the meropenem + levofloxacin (MEM + LEV) group, p = 0.029 (p < 0.05). The curative effect of cefoperazone/sulbactam + amikacin (SCF + AMK) was better than that of the cefoperazone/sulbactam + levofloxacin (SCF + LEV) group, p = 0.025 (p < 0.05). There was no significant difference between combinations of two or three drugs containing AZM, p > 0.05 (p = 0.806). From the MIC results, the AMK single drug was already very sensitive to the selected strains. When MEM or SCF was combined with AZM, the sensitivity of them to strains can be significantly increased. When combined with MEM and AZM, the MIC50 and MIC90 of MEM decreased to 1 and 2 ug/mL from 8 to 32 ug/mL. When combined with SCF + AZM, the MIC50 of SCF decreased to 16 ug/mL, and the curve shifted obviously. However, for the combination of SCF + LEV + AZM, MIC50 and MIC90 could not achieve substantive changes. From the FIC index results, the main actions of MEM + AZM were additive effects, accounting for 72%; for the combination of SCF + AZM, the additive effect was 40%. The combination of AMK or LEV with AZM mainly showed unrelated effects, and the combination of three drugs could not improve the positive correlation between LEV and AZM. Conclusion: AZM may increase the effect of MEM or SCF against MDR P. aeruginosa VAP. Based on MEM or SCF combined with AMK or AZM, we can achieve a good effect in the treatment of MDR P. aeruginosa VAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...