Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Phytomedicine ; 132: 155320, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38901285

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE: The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS: ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS: GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION: GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.

2.
J Pharm Biomed Anal ; 242: 116023, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38395000

ABSTRACT

OBJECTIVE: In this study, we aimed to investigate the cytotoxicity and potential mechanisms of SC-43 by analyzing the global proteomics and metabolomics of HepG2 cells exposed to SC-43. METHODS: The effect of SC-43 on cell viability was evaluated through CCK-8 assay. Proteomics and metabolomics studies were performed on HepG2 cells exposed to SC-43, and the functions of differentially expressed proteins and metabolites were categorized. Drug affinity responsive target stability (DARTS) was utilized to identify the potential binding proteins of SC-43 in HepG2 cells. Finally, based on the KEGG pathway database, the co-regulatory mechanism of SC-43 on HepG2 cells was elucidated by conducting a joint pathway analysis on the differentially expressed proteins and metabolites using the MetaboAnalyst 5.0 platform. RESULTS: Liver cell viability is significantly impaired by continuous exposure to high concentrations of SC-43. Forty-eight dysregulated proteins (27 upregulated, 21 downregulated) were identified by proteomics analysis, and 184 dysregulated metabolites (65 upregulated, 119 downregulated) were determined by metabolomics in HepG2 cells exposed to SC-43 exposure compared with the control. A joint pathway analysis of proteomics and metabolomics data using the MetaboAnalyst 5.0 platform supported the close correlation between SC-43 toxicity toward HepG2 and the disturbances in pyrimidine metabolism, ferroptosis, mismatch repair, and ABC transporters. Specifically, SC-43 significantly affected the expression of several proteins and metabolites correlated with the above-mentioned functional pathways, such as uridine 5'-monophosphate, uridine, 3'-CMP, glutathione, γ-Glutamylcysteine, TF, MSH2, RPA1, RFC3, TAP1, and glycerol. The differential proteins suggested by the joint analysis were further selected for ELISA validation. The data showed that the RPA1 and TAP1 protein levels significantly increased in HepG2 cells exposed to SC-43 compared to the control group. The results of ELISA and joint analysis were basically in agreement. Notably, DARTS and biochemical analysis indicated that SART3 might be a potential target for SC-43 toxicity in HepG2 cells. CONCLUSION: In summary, prolonged exposure of liver cells to high concentrations of SC-43 can result in significant damage. Based on a multi-omics analysis, we identified proteins and metabolites associated with SC-43-induced hepatocellular injury and clarified the underlying mechanism, providing new insights into the toxic mechanism of SC-43.


Subject(s)
Metabolomics , Proteomics , Humans , Hep G2 Cells , Metabolomics/methods , Hepatocytes/metabolism , Liver , Enzyme Inhibitors/pharmacology
3.
Parkinsonism Relat Disord ; 120: 105987, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183890

ABSTRACT

OBJECTIVE: This study aims to determine the link between choroid plexus (CP) volume and cognitive decline in patients with early-stage Parkinson's disease (PD) and to test whether pathological proteins in the cerebrospinal fluid (CSF) are involved in the modulation of any detrimental effects from CP volume. METHODS: Data on 95 early-stage PD patients with 5 years of follow-up were collected from the Parkinson's Progression Marker Initiative cohort. The patients were separated into three groups based on tertiles of baseline CP volume. We then used a linear mixed model for longitudinal analysis and conducted path analysis to investigate mediating effects. RESULTS: At baseline, the patients in both the upper and middle tertile group were older and had lower concentrations of CSF Aß1-42 than those in the lowest tertile group. Longitudinal analysis showed that the upper tertile group suffered from a more rapid cognitive decline in the Symbol Digit Modalities test, Hopkins Verbal Learning Test (HVLT)-retention, and HVLT delayed recalled score. Furthermore, path analysis showed that the pathological effects of CP volume on the 5-year decline in memory might be partly mediated by the CSF Aß1-42/αsyn ratio. CONCLUSION: CP enlargement could be an independent risk factor for decreased cognition in patients with early-stage PD, and this risk may be mediated by CSF pathological proteins.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/psychology , Choroid Plexus/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/psychology , Biomarkers/cerebrospinal fluid
4.
Heliyon ; 9(8): e18364, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533995

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS) is a potential treatment option for Parkinson's disease patients with depression (DPD), but conflicting results in previous studies have questioned its efficacy. Method: To investigate the safety and efficacy of neuronavigated high-frequency rTMS at the left DLPFC in DPD patients, we conducted a randomized, double-blind, sham-controlled study (NCT04707378). Sixty patients were randomly assigned to either a sham or active stimulation group and received rTMS for ten consecutive days. The primary outcome was HAMD, while secondary outcomes included HAMA, MMSE, MoCA and MDS-UPDRS-III. Assessments were performed at baseline, immediately after treatment, 2 weeks, and 4 weeks post-treatment. Results: The GEE analysis showed that the active stimulation group had significant improvements in depression, anxiety, and motor symptoms at various time points. Specifically, there were significant time-by-group interaction effects in depression immediately after treatment (ß, -4.34 [95% CI, -6.90 to -1.74; P = 0.001]), at 2 weeks post-treatment (ß, -3.66 [95% CI, -6.43 to -0.90; P = 0.010]), and at 4 weeks post-treatment (ß, -4.94 [95% CI, -7.60 to -2.29; P < 0.001]). Similarly, there were significant time-by-group interaction effects in anxiety at 4 weeks post-treatment (ß, -2.65 [95% CI, -4.96 to -0.34; P = 0.024]) and in motor symptoms immediately after treatment (ß, -5.72 [95% CI, -9.10 to -2.34; P = 0.001] and at 4 weeks post-treatment (ß, -5.43 [95% CI, -10.24 to -0.61; P = 0.027]). Conclusion: The study suggested that neuronavigated high-frequency rTMS at left DLPFC is effective for depression, anxiety, and motor symptoms in PD patients.

5.
Neurosci Lett ; 814: 137435, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37562710

ABSTRACT

BACKGROUND: Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction. OBJECTIVES: The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients. METHODS: Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value. RESULTS: We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/α-synuclein (OR, 0.00; p = 0.011), CSF tTau/Aß (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPS-index) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively. CONCLUSIONS: This study proposes an effective nomogram to predict different motor progression patterns in early-stage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.


Subject(s)
Glymphatic System , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Prognosis , Models, Statistical , Biomarkers , Phenotype
6.
iScience ; 26(8): 107458, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37575183

ABSTRACT

α-Synuclein preformed fibrils (α-syn PFF) in the blood can cross the blood-brain barrier and invade the central nervous system. Our previous study proved that α-syn PFF can be taken up by brain microvascular endothelial cells (BMVECs). Here, we found that α-syn PFF spread from BMVECs to pericytes with the highest transmission efficiency. We observed abundant tunneling nanotubes (TNTs) connecting BMVECs and pericytes, and α-syn PFF transmitted through these TNTs. Furthermore, α-syn PFF accumulation in BMVECs did not promote TNT formation, but activated the molecular motor Myo1d. Inhibition of Myo1d prevented α-syn PFF transfer from BMVECs to pericytes and decreased the colocalization of Myo1d and F-actin in BMVECs. In summary, we are the first to demonstrate that α-syn PFF spread from BMVECs to pericytes through a mechanism involving TNTs and myosin. Targeting Myo1d may be a promising approach to prevent α-syn spreading from the blood to the brain.

7.
Ann Neurol ; 94(4): 672-683, 2023 10.
Article in English | MEDLINE | ID: mdl-37377170

ABSTRACT

OBJECTIVE: Emerging pathological evidence suggests that there is an association between glymphatic dysfunction and the progression of Parkinson's disease (PD). However, the clinical evidence of this association remains lacking. METHODS: In this study, the index for diffusion tensor image analysis along the perivascular space (ALPS index) was calculated to evaluate glymphatic function. RESULTS: Overall, 289 patients with PD were enrolled in the cross-sectional study. The ALPS index was found to be negatively correlated with age, disease severity, and dyskinesia. In the longitudinal study, the information on a total of 95 PD patients with 5-year follow-up examinations was collected from the Parkinson's Progression Marker Initiative, 33 of which were classified into the low ALPS index group, and all others were classified into the mid-high ALPS index group based on the first tertile of the baseline ALPS index. The results of longitudinal regression indicated that there was a significant main group effect on autonomic dysfunction, as well as on activities of daily living. In addition, the low ALPS index group had faster deterioration in MDS-UPDRS part III and part II, Symbol Digit Modalities Test and Hopkins Verbal Learning Test. Path analysis showed that ALPS index acted as a significant mediator between tTau/ Aß1-42 and cognitive change in the Symbol Digit Modalities Test score at year 4 and year 5. INTERPRETATION: The ALPS index, an neuroimaging marker of glymphatic function, is correlated with PD disease severity, motor symptoms, and autonomic function, and is predictive of faster deterioration in motor symptoms and cognitive function. Additionally, glymphatic function may mediate the pathological role of toxic protein in cognitive decline. ANN NEUROL 2023;94:672-683.


Subject(s)
Activities of Daily Living , Parkinson Disease , Humans , Cross-Sectional Studies , Longitudinal Studies , Parkinson Disease/diagnostic imaging , Neuroimaging
8.
Adv Sci (Weinh) ; 10(25): e2301903, 2023 09.
Article in English | MEDLINE | ID: mdl-37381656

ABSTRACT

The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.


Subject(s)
Cognitive Dysfunction , Synucleinopathies , Animals , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cognitive Dysfunction/etiology , Endocytosis , Endothelial Cells/metabolism , Mice, Knockout , Synucleinopathies/genetics , Synucleinopathies/metabolism , Synucleinopathies/pathology
9.
J Ethnopharmacol ; 314: 116532, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37149071

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia jasminoides Ellis is a traditional Chinese medicine that has been used for treatment of various diseases, including atherosclerosis by clearing heat and detoxication. Geniposide is considered as the effective compounds responsible for the therapeutic efficacy of Gardenia jasminoides Ellis against atherosclerosis. AIM OF THE STUDY: To investigate the effect of geniposide on atherosclerosis burden and plaque macrophage polarization, with focus on its potential impact on CXCL14 expression by perivascular adipose tissue (PVAT). MATERIALS AND METHODS: ApoE-/- mice fed a western diet (WD) were used to model atherosclerosis. In vitro cultures of mouse 3T3-L1 preadipocytes and RAW264.7 macrophages were used for molecular assays. RESULTS: The results revealed that geniposide treatment reduced atherosclerotic lesions in ApoE-/- mice, and this effect was correlated with increased M2 and decreased M1 polarization of plaque macrophages. Of note, geniposide increased the expression of CXCL14 in PVAT, and both the anti-atherosclerotic effect of geniposide, as well as its regulatory influence on macrophage polarization, were abrogated upon in vivo CXCL14 knockdown. In line with these findings, exposure to conditioned medium from geniposide-treated 3T3-L1 adipocytes (or to recombinant CXCL14 protein) enhanced M2 polarization in interleukin-4 (IL-4) treated RAW264.7 macrophages, and this effect was negated after CXCL14 silencing in 3T3-L1 cells. CONCLUSION: In summary, our findings suggest that geniposide protects ApoE-/- mice against WD-induced atherosclerosis by inducing M2 polarization of plaque macrophages via enhanced expression of CXCL14 in PVAT. These data provide novel insights into PVAT paracrine function in atherosclerosis and reaffirm geniposide as a therapeutic drug candidate for atherosclerosis treatment.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Adipocytes/metabolism , Macrophages/metabolism , Apolipoproteins E/genetics , Mice, Inbred C57BL , Chemokines, CXC/metabolism , Chemokines, CXC/therapeutic use
10.
Int J Biochem Cell Biol ; 157: 106385, 2023 04.
Article in English | MEDLINE | ID: mdl-36754160

ABSTRACT

α-Synuclein phosphorylation and mitochondrial calcium homeostasis are important mechanisms underlying mitochondrial dysfunction in Parkinson's disease, but the network regulating these mechanisms remains unclear. We identified the role of key phosphokinases and the pathological effects of α-synuclein phosphorylation on mitochondrial calcium influx and mitochondrial function in Parkinson's disease. The function of the key phosphokinase, calcium/calmodulin-dependent serine protein kinase, was investigated through loss- and gain-of-function experiments using a cell model of Parkinson's disease. The regulation of mitochondrial calcium uniporter-mediated mitochondrial calcium influx by calcium/calmodulin-dependent serine protein kinase was explored using a cellular model of Parkinson's disease. Coimmunoprecipitation experiments and α-synuclein mutation were used to explore the mechanism through which calcium/calmodulin-dependent serine protein kinase regulates mitochondrial calcium uniporter-mediated mitochondrial calcium influx and exacerbates mitochondrial damage in Parkinson's disease. Here, we show the pathogenic role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease progression. Calcium/calmodulin-dependent serine protein kinase phosphorylated α-synuclein to activate mitochondrial calcium uniporter and thus increase mitochondrial calcium influx, and these effects were blocked by α-synuclein S129A mutant expression. Furthermore, the calcium/calmodulin-dependent serine protein kinase inhibitor CASK-IN-1 exerted neuroprotective effects in Parkinson's disease. Collectively, our results suggest that calcium/calmodulin-dependent serine protein kinase phosphorylates α-synuclein to activate the mitochondrial calcium uniporter and thereby causes mitochondrial calcium overload and mitochondrial damage in Parkinson's disease. We elucidated a new role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease and revealed the potential therapeutic value of targeting calcium/calmodulin-dependent serine protein kinase in Parkinson's disease treatment.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein , Calmodulin/metabolism , Calcium/metabolism , Protein Kinases/metabolism , Serine
11.
Mol Neurobiol ; 60(2): 979-1003, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394710

ABSTRACT

Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and accumulation of misfolded alpha-synuclein (αSyn) into Lewy bodies. In addition to motor impairment, PD commonly presents with cognitive impairment, a non-motor symptom with poor outcome. Cortical αSyn pathology correlates closely with vascular risk factors and vascular degeneration in cognitive impairment. However, how the brain microvasculature regulates αSyn pathology and neurodegeneration remains unclear. Here, we constructed a rapidly progressive PD model by injecting alpha-synuclein preformed fibrils (αSyn PFFs) into the cerebral cortex and striatum. Brain capillaries in mice with cognitive impairment showed a reduction in diameter and length after 6 months, along with string vessel formation. The intracellular domain of low-density lipoprotein receptor-related protein-1 (LRP1-ICD) was upregulated in brain microvascular endothelium. LRP1-ICD promoted αSyn PFF uptake and exacerbated endothelial damage and neuronal apoptosis. Then, we overexpressed LRP1-ICD in brain capillaries using an adeno-associated virus carrying an endothelial-specific promoter. Endothelial LRP1-ICD worsened αSyn PFF-induced vascular damage, αSyn pathology, or neuron death in the cortex and hippocampus, resulting in severe motor and cognitive impairment. LRP1-ICD increased the synthesis of poly(adenosine 5'-diphosphate-ribose) (PAR) in the presence of αSyn PFFs. Inhibition of PAR polymerase 1 (PARP1) prevented vascular-derived injury, as did loss of PARP1 in the endothelium, which was further implicated in endothelial cell proliferation and inflammation. Together, we demonstrate a novel vascular mechanism of cognitive impairment in PD. These findings support a role for endothelial LRP1-ICD/PARP1 in αSyn pathology and neurodegeneration, and provide evidence for vascular protection strategies in PD therapy.


Subject(s)
Parkinson Disease , Animals , Mice , alpha-Synuclein , Cognition , Dopaminergic Neurons/pathology , Lewy Bodies/pathology , Low Density Lipoprotein Receptor-Related Protein-1 , Nucleotidyltransferases , Parkinson Disease/pathology
12.
Neuroscience ; 490: 100-119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35257795

ABSTRACT

Parkinson's disease (PD) is one of the most common chronic progressive neurodegenerative diseases that affects both motor and non-motor functions. Bile acids modulate the immune system by targeting brain receptors. INT-777, a 6α-ethyl-23(S)-methyl derivative of cholic acid (S-EMCA), acts as an agonist for Takeda G protein-coupled receptor-5 (TGR5) and has neuroprotective properties. However, the effects of INT-777 on PD have not yet been investigated. In a subchronic PD model, mice treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) developed motor deficits and cognitive impairment that were ameliorated after intranasal administration of INT-777. INT-777 prevented MPTP-induced neurodegeneration and microglia activation in the substantia nigra pars compacta, hippocampus, and cortical layer V. Based on bioinformatics and wet lab data, INT-777 inhibited microglia activation by suppressing the release of tumor necrosis factor alpha (TNF-α) in the hippocampus, along with secondary chemokines (C-C motif ligand 3 (CCL3) and CCL6) in these three brain regions. INT-777 inhibited TNF-α production by repairing mitochondrial damage, which was associated with nuclear factor-erythroid 2-related factor-2 (NRF2) activation and p62/LC3B-mediated autophagy. INT-777 reversed the downregulation of heme oxygenase-1 (HO1), NAD(P)H quinone oxidoreductase-1 (NQO1) and accumulation of p62 in microglia treated with 1-methyl-4-phenylpyridinium (MPP+). However, TGR5 knockdown in microglia abolished INT-777's inhibition of TNF-α release, resulting in neuronal death. Therefore, PD cognitive impairment is associated with hippocampal TNF-α elevation as a result of mitochondrial damage in microglia. Our data reveal the potential role of TGR5 in modulating inflammation-mediated neurodegeneration in PD, and provides new insights for bile acid metabolites as promising disease-modifying drugs for PD.


Subject(s)
Microglia , Mitochondrial Dynamics , Parkinson Disease, Secondary , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , 1-Methyl-4-phenylpyridinium , Animals , Cholic Acids/pharmacology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Parkinson Disease, Secondary/drug therapy , Tumor Necrosis Factor-alpha/metabolism
13.
Front Pharmacol ; 12: 687394, 2021.
Article in English | MEDLINE | ID: mdl-34305600

ABSTRACT

Inflammation and apoptosis of vascular endothelial cells play a key role in the occurrence and development of atherosclerosis (AS), and the AMPK/mTOR/Nrf2 signaling pathway plays an important role in alleviating the symptoms of AS. Geniposide combined with notoginsenoside R1 (GN combination) is a patented supplement for the prevention and treatment of AS. It has been proven to improve blood lipid levels and inhibit the formation of AS plaques; however, it is still unclear whether GN combination can inhibit inflammation and apoptosis in AS by regulating the AMPK/mTOR/Nrf2 signaling pathway and its downstream signals. Our results confirmed that the GN combination could improve blood lipid levels and plaque formation in ApoE -/- mice fed with a high-fat diet (HFD), inhibit the secretion of serum inflammatory factors and oxidative stress factors. It also decreased the expression of pyrin domain containing protein 3 (NLRP3) inflammasome-related protein and Bax/Bcl2/caspase-3 pathway-related proteins. At the same time, the GN combination could also inhibit the H2O2-induced inflammatory response and apoptosis of human umbilical vein endothelial cells (HUVECs), which is mainly related to the activation of the AMPK/mTOR pathway by GN combination, which in turn induces the activation of Nrf2/HO-1 signal. In addition, the above phenomenon could be significantly reversed by dorsomorphin. Therefore, our experiments proved for the first time that the GN combination can effectively inhibit AS inflammation and apoptosis by activating the AMPK/mTOR/Nrf2 signaling pathway to inhibit the NLRP3 inflammasome and Bax/Bcl2/caspase-3 pathway.

14.
Int J Neurosci ; 131(4): 411-424, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32253965

ABSTRACT

Background: Nowadays, antidepressants still are the mainstay of treatment for depression in Parkinson's disease (PD) but some recent studies report that medication might aggravate motor symptoms in PD patients. This meta-analysis aims to assess the effect of non-pharmacological treatments for depression in patients with PD.Materials and Methods: Only randomized controlled trials (RCTs) were included. The participants were PD patients with comorbid depression (dPD). The interventions had the equivalent effect of non-pharmacological treatments alone compared with control(s). Scores of depression scale were selected as the primary outcome, while scores of Unified Parkinson's Disease Rating Scale part III and the incidence of side effects were the secondary outcome. The statistics were pooled and presented as weighted mean differences (WMDs), standardized mean differences (SMDs), or risk ratios (RRs) with their 95% confidence intervals (CIs).Results: Fifteen articles were eventually included; twelve studies reported on repetitive transcranial magnetic stimulation (rTMS) and three used cognitive behavioral therapy (CBT). Other interventions failed to have qualified studies. Our data indicated that both rTMS and CBT could significantly improve depression scores in a short term (SMD = -0.621, 95% CI [-0.964, -0.278]; SMD = -1.148, 95% CI [-1.498, -0.798], respectively). In addition, rTMS could alleviate motor symptom (WMD = -2.617, 95% CI [-4.183, -1.051]) and was relatively safe (RR = 1.054, 95% CI [0.698, 1.592]).Conclusion: Our data suggest that rTMS can safely alleviate depression and motor symptoms in dPD at least for a short period. Moreover, compared with clinical monitoring, CBT can improve depressive symptoms.


Subject(s)
Cognitive Behavioral Therapy , Depression/complications , Parkinson Disease/complications , Parkinson Disease/therapy , Transcranial Magnetic Stimulation , Combined Modality Therapy , Humans , Treatment Outcome
15.
Am J Chin Med ; 48(8): 1821-1840, 2020.
Article in English | MEDLINE | ID: mdl-33308094

ABSTRACT

Macrophage autophagy defect is closely related to the progression of atherosclerosis (AS) and is regulated by the triggering receptor expressed on myeloid cell 2 (TREM2). TREM2 is a key factor in the development of Alzheimer's disease (AD), the deficiency of which leads to anomalous autophagy in microglia. However, the role of TREM2 in the autophagy of plaque macrophages is still unclear. Geniposide (GP) can inhibit AS progression and enhance macrophage autophagy, although the underlying mechanisms remain unknown. We found that high-fat diet (HFD) feeding significantly increased TREM2 levels and inhibited autophagy in the macrophages of ApoE[Formula: see text] mice. TREM2 overexpression in RAW264.7 macrophages decreased autophagy via activation of mTOR signaling. GP inhibited the progression of AS in ApoE[Formula: see text] mice, reinforced macrophage autophagy, and downregulated TREM2 by inhibiting mTOR signaling. Taken together, augmenting the autophagy levels in plaque macrophages by inhibiting the TREM2/mTOR axis can potentially impede atherosclerotic progression. The promising therapeutic effects of GP seen in this study should be validated in future trials, and the underlying mechanisms have to be elucidated in greater detail.


Subject(s)
Atherosclerosis/drug therapy , Atherosclerosis/genetics , Autophagy/drug effects , Autophagy/genetics , Down-Regulation/drug effects , Gene Expression/drug effects , Gene Expression/genetics , Iridoids/pharmacology , Iridoids/therapeutic use , Macrophages/physiology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Phytotherapy , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Int Immunopharmacol ; 80: 106196, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31978803

ABSTRACT

Sepsis-induced liver injury is very common in intensive care units. Here, we investigated the effects of 6-gingerol on sepsis-induced liver injury and the role of the Nrf2 pathway in this process. 6-Gingerol is the principal ingredient of ginger that exerts anti-inflammatory and antioxidant effects. Using cecal ligation and puncture (CLP) to induce polymicrobial sepsis and related liver injury, we found that mice pre-treated with 6-Gingerol showed less incidences of severe liver inflammation and death than untreated CLP groups. 6-Gingerol administration also inhibited the expression of pyroptosis-related proteins, including NOD-like receptor protein 3 (NLRP3), IL-1ß, and caspase-1. Consistent with these findings, 6-gingerol reduced the effects of pyroptosis induced by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) in RAW 264.7 cells, as evidenced by IL-1ß and caspase-1 protein levels in the supernatant and propidium iodide (PI) staining. 6-Gingerol was shown to activate the Nrf2 pathway in vivo and in vitro. Notably, Nrf2 siRNA transfection nullified the inhibitory effects of 6-gingerol on pyroptosis in vitro. In summary, these findings suggested that 6-gingerol alleviated sepsis-induced liver injury by inhibiting pyroptosis through the Nrf2 pathway.


Subject(s)
Catechols/pharmacology , Fatty Alcohols/pharmacology , Liver Failure, Acute/drug therapy , NF-E2-Related Factor 2/metabolism , Sepsis/complications , Signal Transduction/drug effects , Animals , Catechols/therapeutic use , Disease Models, Animal , Fatty Alcohols/therapeutic use , Gene Knockdown Techniques , Humans , Liver/drug effects , Liver/immunology , Liver/pathology , Liver Failure, Acute/immunology , Liver Failure, Acute/pathology , Male , Mice , NF-E2-Related Factor 2/genetics , Pyroptosis/drug effects , Pyroptosis/immunology , RAW 264.7 Cells , RNA, Small Interfering/metabolism , Sepsis/immunology , Signal Transduction/genetics , Signal Transduction/immunology
17.
Mol Med Rep ; 20(5): 4253-4261, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31545438

ABSTRACT

Investigating active compounds from Chinese herbal medicine that can rescue myocardial cells is a good approach to preserve cardiac function. Several herbal formulae that containing Semen Ziziphi Spinosae (SZS), also called Suanzaoren in Chinese, are clinically effective in the treatment of patients with acute myocardial infarction (AMI). The present study aimed to investigate the cardioprotective effects of spinosin and 6'''­feruloylspinosin, two flavonoid glycosides from SZS, in a rat model of myocardial ischemia and reperfusion. The left anterior descending artery (LAD) was occluded to induce myocardial ischemia. Spinosin or 6'''­feruloylspinosin (5 mg/kg) was intraperitoneally injected into rats 30 min before LAD ligation. The protein levels of myocardial enzymes in the serum, the extent of tissue injury and the rate of apoptosis were examined after AMI in rats with or without pretreatment with spinosin or 6'''­feruloylspinosin. Western blotting was performed to investigate the potential mechanisms underlying the function of these two flavonoid glycosides. The present results suggested that pretreatment with spinosin or 6'''­feruloylspinosin significantly attenuated myocardial tissue injury, and reduced myocardial enzyme release and cell apoptosis in AMI rats. In addition, spinosin treatment increased light chain 3B­II and 6'''­feruloylspinosin, and reduced p62, indicating that autophagy was promoted after drug treatments. Treatments of spinosin and 6'''­feruloylspinosin led to the reduction of glycogen synthase kinase­3ß (GSK3ß) phosphorylation at Tyr216, and the increase of peroxisome proliferator­activated receptor γ coactivator (PGC)­1α and its downstream signaling proteins, including nuclear factor (erythroid­derived 2)­like 2 (Nrf2) and hemeoxygenase1 (HO­1). The present data suggested that SZS flavonoids could protect myocardial cells against acute heart ischemia­reperfusion, probably via the inhibition of GSK3ß, which increased autophagy and the activity of the PGC­1α/Nrf2/HO­1 pathway.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Heart/drug effects , Animals , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Flavonoids/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Male , Molecular Structure , Myocardial Ischemia/drug therapy , Myocardial Ischemia/etiology , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...