Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786789

ABSTRACT

Herein, a series of heterogeneous Fenton catalysts, Cu doped MnO2 (CDM), with different Cu/Mn molar ratios were prepared via a hydrothermal reaction. Meanwhile, detailed characterizations were used to study the structures of CDM, and it is amazing that the morphology of CDM changed from nanowires to nanoflowers with an increasing amount of Cu doped. Apart from this, both the specific surface area and oxygen vacancy increased obviously with the increasing Cu/Mn molar ratio. Then, the degradation of different dyes was utilized to evaluate the catalytic activity of different CDM with H2O2 used as the oxidizing agent, and the 50%-CDM with the highest content of Cu doped displayed the best catalytic activity. Herein, the degradation efficiency (D%) of Congo red (CR) solution with low concentration (60 mg/L) reached 100% in 3 min, while the D% of CR solution with a high concentration (300 mg/L) reached 99.4% after 5 min with a higher dosage of H2O2. Additionally, the 50%-CDM also displayed excellent reusability, for which the D% values were still higher than 90% after the 14th cycles. Based on the structure characteristics and mechanism analysis, the excellent catalytic capacity of 50%-CDM was due to the combined influence of large specific surface area and abundant oxygen vacancy. Thus, a promising heterogeneous Fenton catalyst was developed in this study, which proved the treatment efficiency of actual dye wastewater.

2.
J Phys Chem Lett ; 15(17): 4705-4710, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38656800

ABSTRACT

Electrochemical CO2 reduction (CO2R) to feedstocks competes with the hydrogen evolution reaction (HER). Cobalt phthalocyanine (CoPc) immobilized onto carbon driven by π-π interaction represents a classical type of heterogeneous molecular catalyst for CO2R. However, the impacts of π conjugation on the electrocatalysis have not been clarified. Herein, the electrochemical properties of CoPc were investigated by comparison of its analogue to 2,3-naphthalocyanine cobalt (NapCo) having extended π conjugation. It is found that CoPc is redox-active on carbon to provide low oxidized Co sites for improving the CO2R activity and selectivity, while NapCo on carbon turned out to be redox-inert leading to lower performance. In addition, the redox-mediated mechanism for CO2R on CoPc tends to operate with increasing electrolyte alkalinity, which further enhances the reaction selectivity. We speculated that moderate π conjugation allows the redox-mediated mechanism on CoPc, which is critical to promote CO2R performance while depressing the competing HER.

3.
Nat Commun ; 14(1): 7225, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940641

ABSTRACT

Interlayer coupling strength dichotomizes two-dimensional (2D) materials into layered and non-layered types. Traditionally, they can be regarded as atomic layers intrinsically linked via van der Waals (vdW) forces or covalent bonds, oriented orthogonally to their growth plane. In our work, we report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials. Therefore, the lattice constant contraction along this unique orientation can be as much as 7.7%, tantalizingly close to the theoretical prediction of 10.8%. Meanwhile, this feature endows remarkable anisotropy, second harmonic generation enhancement with a staggering susceptibility of 394.3 pm V-1. These findings endow further applications arranged in nonlinear optics, sensors, and catalysis.

4.
Inorg Chem ; 61(45): 18318-18324, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36322933

ABSTRACT

The microenvironment tuning of Ni species, a promising non-precious catalyst, is significant in the energy and environmentally relevant urea electro-oxidation reaction (UOR). Herein, we found that the high-valent Ni species induced by the inactive MoO2 in mixed nanocrystals of NiO/MoO2 were effective for urea oxidation. The redox interaction of MoO2 and NiO revealed by the spectroscopic analysis well supported the formation of high-valent Ni species and the changes in the surface chemical state. High catalytic activity and stability for urea oxidation were observed by a series of electrochemical measures compared to the counterpart catalysts of MoO2 and NiO. The optimal NiO/MoO2 hybrid catalyst showed a UOR activity of 73.1 mA cm-2 at 1.50 V, which was about 12-fold that of the NiO catalyst. In addition, largely improved catalytic kinetics and catalytic stability for UOR were also demonstrated. Because of the inactive activity of MoO2 and the low performance of NiO, the largely improved preference can be affirmatively attributed to the efficient catalytic synergism of NiO/MoO2 in the mixed nanocrystals. The current finding clarifies the catalytic promotion effect of the inactive Mo species on Ni-based catalysts for urea oxidation, which would be instructive for Ni/Mo-relevant catalyst development.


Subject(s)
Nickel , Urea , Urea/analysis , Urea/chemistry , Nickel/chemistry , Catalysis , Oxidation-Reduction
5.
Adv Mater ; 34(2): e2106400, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34676927

ABSTRACT

Single-crystal-to-single-crystal (SCSC) transformations have received considerable interest in crystal engineering, owing to providing a key platform for creating new materials. However, because of the limited tolerance of chemical bonds against the lattice strains, it is challenging to maintain the crystallinity when the structure changes dramatically. Here, a peculiar SCSC transformation from organic crystals to inorganic crystals, simultaneously achieving a drastic change in structure, connectivity, and dimension, is reported. As a demonstration, after reacting with liquid gallium, zeolitic imidazolate framework-8 (ZIF-8) can easily transform to 2D hydroxide single crystals. Interestingly, long-range ordered metallic atoms of hydroxide inherited from the ordered atomic arrangement of ZIF-8, but the connectivity is distinct. With good universality and extensibility, this transformation vastly expands the research scope of the SCSC transformations and provides a novel pathway for the synthesis of crystalline materials.

7.
Angew Chem Int Ed Engl ; 57(28): 8483-8487, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29767453

ABSTRACT

We used nearest-neighbor searches in chemical space to improve the activity of the antimicrobial peptide dendrimer (AMPD) G3KL and identified dendrimer T7, which has an expanded activity range against Gram-negative pathogenic bacteria including Klebsiellae pneumoniae, increased serum stability, and promising activity in an in vivo infection model against a multidrug-resistant strain of Acinetobacter baumannii. Imaging, spectroscopic studies, and a structural model from molecular dynamics simulations suggest that T7 acts through membrane disruption. These experiments provide the first example of using virtual screening in the field of dendrimers and show that dendrimer size does not limit the activity of AMPDs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Molecular Dynamics Simulation
8.
J Am Chem Soc ; 140(1): 423-432, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29206041

ABSTRACT

New antibiotics are urgently needed to address multidrug-resistant (MDR) bacteria. Herein we report that second-generation (G2) peptide dendrimers bearing a fatty acid chain at the dendrimer core efficiently kill Gram-negative bacteria including Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most problematic MDR bacteria worldwide. Our most active dendrimer TNS18 is also active against Gram-positive methicillin-resistant Staphylococcus aureus. Based on circular dichroism and molecular dynamics studies, we hypothesize that TNS18 adopts a hydrophobically collapsed conformation in water with the fatty acid chain backfolded onto the peptide dendrimer branches and that the dendrimer unfolds in contact with the membrane to expose its lipid chain and hydrophobic residues, thereby facilitating membrane disruption leading to rapid bacterial cell death. Dendrimer TNS18 shows promising in vivo activity against MDR clinical isolates of A. baumannii and Escherichia coli, suggesting that lipidated peptide dendrimers might become a new class of antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dendrimers/pharmacology , Drug Resistance, Bacterial/drug effects , Lipids/pharmacology , Peptides/pharmacology , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemistry , Dendrimers/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Lipids/chemistry , Mice , Microbial Sensitivity Tests , Molecular Conformation , Peptides/chemistry , Pseudomonas aeruginosa/drug effects , Structure-Activity Relationship
9.
Chem Sci ; 8(11): 7464-7475, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29163899

ABSTRACT

Here we report a new family of cyclic antimicrobial peptides (CAMPs) targeting MDR strains of Pseudomonas aeruginosa. These CAMPs are cyclized via a xylene double thioether bridge connecting two cysteines placed at the ends of a linear amphiphilic alternating d,l-sequence composed of lysines and tryptophans. Investigations by transmission electron microscopy (TEM), dynamic light scattering and atomic force microscopy (AFM) suggest that these peptide macrocycles interact with the membrane to form lipid-peptide aggregates. Amphiphilic conformations compatible with membrane disruption are observed in high resolution X-ray crystal structures of fucosylated derivatives in complex with lectin LecB. The potential for optimization is highlighted by N-methylation of backbone amides leading to derivatives with similar antimicrobial activity but lower hemolysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...