Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 22(1): 254, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702781

ABSTRACT

IL-3/STAT5 signaling pathway is crucial for the development and activation of immune cells, contributing to the cellular response to infections and inflammatory stimuli. Dysregulation of the IL-3/STAT5 signaling have been associated with inflammatory and autoimmune diseases characterized by inflammatory cell infiltration and organ damage. IL-3 receptor α (IL-3Rα) specifically binds to IL-3 and initiates intracellular signaling, resulting in the phosphorylation of STAT5. However, the regulatory mechanisms of IL-3Rα remain unclear. Here, we identified the E3 ubiquitin ligase RNF128 as a negative regulator of IL-3/STAT5 signaling by targeting IL-3Rα for lysosomal degradation. RNF128 was shown to selectively bind to IL-3Rα, without interacting with the common beta chain IL-3Rß, which shares the subunit with GM-CSF. The deficiency of Rnf128 had no effect on GM-CSF-induced phosphorylation of Stat5, but it resulted in heightened Il-3-triggered activation of Stat5 and increased transcription of the Id1, Pim1, and Cd69 genes. Furthermore, we found that RNF128 promoted the K27-linked polyubiquitination of IL-3Rα in a ligase activity-dependent manner, ultimately facilitating its degradation through the lysosomal pathway. RNF128 inhibited the activation and chemotaxis of macrophages in response to LPS stimulation, thereby attenuating excessive inflammatory responses. Collectively, these results reveal that RNF128 negatively regulates the IL-3/STAT5 signaling pathway by facilitating K27-linked polyubiquitination of IL-3Rα. This study uncovers E3 ubiquitin ligase RNF128 as a novel regulator of the IL-3/STAT5 signaling pathway, providing potential molecular targets for the treatment of inflammatory diseases.


Subject(s)
Interleukin-3 , STAT5 Transcription Factor , Signal Transduction , Ubiquitin-Protein Ligases , Ubiquitination , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Animals , Interleukin-3/metabolism , Mice , Lysosomes/metabolism , HEK293 Cells , Phosphorylation , Receptors, Interleukin-3/metabolism , Receptors, Interleukin-3/genetics
2.
J Cell Physiol ; 238(10): 2348-2360, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565597

ABSTRACT

Innate immunity is the first line of defense against infections, which functions as a significant role in resisting pathogen invasion. Rapid immune response is initiated by pattern recognition receptors (PRRs) quickly distinguishing "self" and "non-self." Upon evolutionarily conserved pathogen-associated molecular pattern (PAMP) is recognized by PRRs, innate immune response against infection is triggered via an orchestration of molecular interaction, cytokines cascades, and immune cells. RIG-I plays a critical role in type I interferon (IFN-I) production by direct recognition of cytoplasmic double-stranded viral RNA. However, the activation mechanism of RIG-I is incompletely understood. In this study, we reported RNA-binding protein ZFP36 as a positive regulator of RIG-I-mediated IFN-I production. ZFP36 is a member of Zinc finger proteins (ZFPs) characterized by the zinc finger (ZnF) motif, which broadly involved gene transcription and signal transduction. However, its role in regulating antiviral innate immune signaling is still unclear. We found that ZFP36 associates with RIG-I and potentiates the FN-ß production induced by SeV. Mechanistically, ZFP36 promotes K63-linked polyubiquitination of RIG-I, mostly at K154/K164/K172, thereby facilitating the activation of RIG-I during infection. While the mutant ZFP36 (C118S/C162S) failed to increase polyubiquitination of RIG-I and SeV induced FN-ß. Our findings collectively demonstrated that ZFP36 acts as a positive regulator in antiviral innate immunity by targeting RIG-I for K63-linked ubiquitination, thus improving our understanding of the activation mechanism of RIG-I.

3.
Ecotoxicol Environ Saf ; 263: 115262, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37480693

ABSTRACT

China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.


Subject(s)
Metals, Rare Earth , Yttrium , Humans , Animals , Mice , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Reactive Oxygen Species , Apoptosis , Autophagy , DNA, Mitochondrial , Genitalia, Male
4.
Chem Asian J ; 17(11): e202200263, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35404509

ABSTRACT

A pair of enantiomeric ligands, (2R,3R)-dibenzyl-2,3-bis(isonicotinoyloxy)succinate ((R,R)-L) and (2S,3S)-dibenzyl-2,3-bis(isonicotinoyloxy)succinate ((S,S)-L), are designed and synthesized. Seven copper (II) coordination polymers {[Cu((R,R)-L)Br2 (THF)] ⋅ CH3 CN} n (1 a) and {[Cu((S,S)-L)Br2 (THF)] ⋅ CH3 CN}n (1 b), {[Cu((R,R)-L)Cl2 (THF)] ⋅ CH3 CN}n (2 a) and {[Cu((S,S)-L)Cl2 (THF)] ⋅ CH3 CN}n (2 b), {[Cu((R,R)-L)(NO3 )2 (CH3 CN)]}n (3 a) and {[Cu((S,S)-L)(NO3 )2 (CH3 CN)]}n (3 b), {[Cu((R,R)-L)2 (CH3 CN)2 ](ClO4 )2 ⋅ 3CH3 CN}n (4) were obtained through the assemblies with CuBr2 , CuCl2 ⋅ 2H2 O, Cu(NO3 )2 ⋅ 3H2 O, Cu(ClO4 )2 ⋅ 6H2 O, respectively. Single-crystal X-ray diffraction and circular dichroism analysis demonstrate that 1 a-3 a, 1 b-3 b have a mono chiral one-dimensional (1D) chain-like spiral structure, while 4 have 1D chain-like structure whose metal centers have chiral propeller coordination environment. Ligand structure, anions and solvent systems have a regulatory effect on the formation of chiral helical structure. Further investigation has proved that 1 a can be used as circular dichroism spectrum probe for monitoring L-/D-cysteine and L-/D-penicillamine configuration and concentration in aqueous media based on ligand interchange mechanism.


Subject(s)
Copper , Polymers , Copper/chemistry , Crystallography, X-Ray , Ligands , Polymers/chemistry , Succinates , Tartrates
5.
Cell Death Differ ; 29(1): 192-205, 2022 01.
Article in English | MEDLINE | ID: mdl-34385679

ABSTRACT

As the most primordial signaling pathway in animal physiology, the Hippo pathway and innate immunity play crucial roles not only in sensing cellular conditions or infections, but also in various metabolite homeostasis and tumorigenesis. However, the correlation between cellular homeostasis and antiviral defense is not well understood. The core kinase LATS1/2, could either enhance or inhibit the anti-tumor immunity in different cellular contexts. In this study, we found that LATS2 can interact with PQBP1, the co-factor of cGAS, thus enhanced the cGAS-STING mediated innate immune response to HIV-1 challenge. LATS2 was observed to upregulate type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA and inhibited HIV-1 infection. Due to the involvement of PQBP1, the function of LATS2 in regulating cGAS activity is not relying on the downstream YAP/TAZ as that in the canonical Hippo pathway. The related kinase activity of LATS2 was verified, and the potential phosphorylation site of PQBP1 was identified. Our study established a novel connection between Hippo signaling and innate immunity, thus may provide new potential intervention target on antiviral therapeutics.


Subject(s)
HIV-1 , Animals , HIV-1/metabolism , Hippo Signaling Pathway , Immunity, Innate , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases
6.
Microbiol Spectr ; 9(3): e0145821, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908452

ABSTRACT

TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines in response to acute viral infection. However, excessive or prolonged production of IFN-I is harmful and even fatal to the host by causing autoimmune disorders. In this study, we identified mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) as a negative regulator in the RIG-I-like receptor (RLR) signaling pathway. MAP4K1, a member of Ste20-like serine/threonine kinases, was previously known as a prominent regulator in adaptive immunity by downregulating T-cell receptor (TCR) signaling and B-cell receptor (BCR) signaling. However, its role in regulating antiviral innate immune signaling is still unclear. This study reports an undiscovered role of MAP4K1, which inhibits RLR signaling by targeting TBK1/IKKε for proteasomal degradation via the ubiquitin ligase DTX4. We initially identify MAP4K1 as an interacting partner of TBK1 by yeast two-hybrid screens and subsequently investigate its function in RLR-mediated antiviral signaling pathways. Overexpression of MAP4K1 significantly inhibits RNA virus-triggered activation of IFN-ß and the production of proinflammatory cytokines. Consistently, knockdown or knockout experiments show opposite effects. Furthermore, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via DTX4. Knockdown of DTX4 abrogated the ubiquitination and degradation of TBK1/IKKε. Collectively, our results identify that MAP4K1 acts as a negative regulator in antiviral innate immunity by targeting TBK1/IKKε, discover a novel TBK1 inhibitor, and extend a novel functional role of MAP4K1 in immunity. IMPORTANCE TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines to restrict the spread of invading viruses. However, excessive or prolonged production of IFN-I is harmful to the host by causing autoimmune disorders. In this study, we identified that mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a negative regulator in the RLR signaling pathway. Notably, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via the ubiquitin ligase DTX4, leading to the negative regulation of the IFN signaling pathway. Previous studies showed that MAP4K1 has a pivotal function in adaptive immune responses. This study identifies that MAP4K1 also plays a vital role in innate immunity and outlines a novel mechanism by which the IFN signaling pathway is tightly controlled to avoid excessive inflammation. Our study documents a novel TBK1 inhibitor, which serves as a potential therapeutic target for autoimmune diseases, and elucidated a significant function for MAP4K1 linked to innate immunity in addition to subsequent adaptive immunity.


Subject(s)
Cytokines/biosynthesis , I-kappa B Kinase/metabolism , Interferon-beta/biosynthesis , Protein Serine-Threonine Kinases/metabolism , Virus Diseases/immunology , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate/immunology , Protein Serine-Threonine Kinases/genetics , RNA Viruses/immunology , Receptors, Immunologic/metabolism , Signal Transduction/immunology , Ubiquitination
7.
Cell Death Dis ; 11(1): 5, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31919392

ABSTRACT

T cell homeostasis is critical for the proper function of the immune system. Following the sharp expansion upon pathogen infection, most T cells die in order to keep balance in the immune system, a process which is controlled by death receptors during the early phase and Bcl-2 proteins in the later phase. It is still highly debated whether the apoptosis of T cells is determined from the beginning, upon activation, or determined later during the contraction. MCL1, a Bcl-2 family member, plays a pivotal role in T cell survival. As a fast turnover protein, MCL1 levels are tightly regulated by the 26S proteasome-controlled protein degradation process. In searching for regulatory factors involved in the actions of MCL1 during T cell apoptosis, we found that ALG-2 was critical for MCL1 stability, a process mediated by a direct interaction between ALG-2 and Rpn3, a key component of the 26S proteasome. As a critical calcium sensor, ALG-2 regulated the activity of the 26S proteasome upon increases to cytosolic calcium levels following T cell activation, this consequently influenced the stability of MCL1 and accelerated the T cell "death" process, leading to T cell contraction and restoration of immune homeostasis. Our study provides support for the notion that T cells are destined for apoptosis after activation, and echoes the previous study about the function of ALG-2 in T cell death.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/genetics , Calcium-Binding Proteins/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , T-Lymphocytes/metabolism , Apoptosis Regulatory Proteins/genetics , Calcium/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Chromatography, Liquid , Genetic Vectors , Homeostasis , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proteasome Endopeptidase Complex/genetics , Protein Binding , Proteolysis , Retroviridae/genetics , Retroviridae/metabolism , T-Lymphocytes/immunology , Tandem Mass Spectrometry
8.
Biochem Biophys Res Commun ; 522(4): 889-896, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31806368

ABSTRACT

Upon invading the cell, the viral RNA is recognized by the RIG-I receptor located in the cytoplasm, causing the RIG-I receptor to be activated. The activated RIG-I receptor transmits downstream antiviral signals by interacting with the adaptor protein VISA located on the mitochondria, leading to the production of type Ⅰ interferons and crude inflammatory cytokine genes. Although there have been many studies on antiviral signal transduction of RIG-I receptors in recent years, the mechanism of RIG-I-VISA-mediated antiviral regulation is still not fully understood. In this study, we identified SNX5 as a negative regulator of RLR-mediated antiviral signaling. Our results show that overexpression of SNX5 inhibits viral-induced activation of the IFN-ß promoter, ISRE, NF-κB, and IRF3, whereas RNAi knockdown of SNX5 expression shows opposite results. We also found that overexpression of SNX5 enhanced RIG-I's K48 ubiquitination and attenuated its K63 ubiquitination, resulting in inhibition of virus-induced RIG-I expression. Besides, further studies show that SNX5 overexpression weakens the interaction between VISA and TRAF2/5. Our findings suggest that SNX5 negatively regulates RLR-mediated antiviral signaling by targeting the RIG-I-VISA signalosome and provide new evidence for the negative regulation of RIG-I-mediated innate immune response mechanisms.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antiviral Agents/metabolism , DEAD Box Protein 58/metabolism , Signal Transduction , Sorting Nexins/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Receptors, Immunologic , Sendai virus , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Ubiquitination
9.
Viruses ; 11(2)2019 02 15.
Article in English | MEDLINE | ID: mdl-30769920

ABSTRACT

RNA virus invasion induces a cytosolic RIG-I-like receptor (RLR) signaling pathway by promoting assembly of the Mitochondrial antiviral-signaling protein (MAVS) signalosome and triggers the rapid production of type I interferons (IFNs) and proinflammatory cytokines. During this process, the pivotal kinase TANK binding kinase 1 (TBK1) is recruited to the MAVS signalosome to transduce a robust innate antiviral immune response by phosphorylating transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-κB and promoting their nuclear translocation. However, the molecular mechanisms underlying the negative regulation of TBK1 are largely unknown. In the present study, we found that THO complex subunit 7 homolog (THOC7) negatively regulated the cellular antiviral response by promoting the proteasomal degradation of TBK1. THOC7 overexpression potently inhibited Sendai virus- or polyI:C-induced IRF3 dimerization and phosphorylation and IFN-ß production. In contrast, THOC7 knockdown had the opposite effects. Moreover, we simulated a node-activated pathway to show that THOC7 regulated the RIG-I-like receptors (RLR)-/MAVS-dependent signaling cascade at the TBK1 level. Furthermore, THOC7 was involved in the MAVS signalosome and promoted TBK1 degradation by increasing its K48 ubiquitin-associated polyubiquitination. Together, these findings suggest that THOC7 negatively regulates type I IFN production by promoting TBK1 proteasomal degradation, thus improving our understanding of innate antiviral immune responses.


Subject(s)
Immunity, Cellular , Immunity, Innate , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/metabolism , Sendai virus/immunology , Gene Expression Regulation , HEK293 Cells , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/immunology , MCF-7 Cells , Phosphorylation , Proteasome Endopeptidase Complex/immunology , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA-Binding Proteins/genetics , Sendai virus/genetics , Signal Transduction , Ubiquitin/metabolism , Ubiquitination
10.
Mol Med Rep ; 18(2): 2458-2466, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29916539

ABSTRACT

Mitochondrial anti­viral signaling protein (VISA), additionally termed MAVS, IPS­1 and Cardif, is located at the outer membrane of mitochondria and is an essential adaptor in the Rig­like receptor (RLRs) signaling pathway. Upon viral infection, activated RLRs interact with VISA on mitochondria, forming a RLR­VISA platform, leading to the recruitment of different TRAF family members, including TRAF3, TRAF2 and TRAF6. This results in the phosphorylation and nuclear translocation of interferon regulatory factors 3 and 7 (IRF3/IRF7) by TANK binding kinase 1 (TBK1) and/or IKKε, as well as activation of NF­κB, to induce type I interferons (IFNs) and pro­inflammatory cytokines. It remains to be elucidated how VISA functions as a scaffold for protein complex assembly in mitochondria to regulate RLR­VISA antiviral signaling. In the present study, it was demonstrated that HAUS augmin like complex subunit 8 (HAUS8) augments the RLR­VISA­dependent antiviral signaling pathway by targeting the VISA complex. Co­immunoprecipitation verified that HAUS8 was associated with VISA and the VISA signaling complex components retinoic acid­inducible gene I (RIG­I) and TBK1 when the RLR­VISA signaling pathway was activated. The data demonstrated that overexpression of HAUS8 significantly promoted the activity of the transcription factors NF­κB, IRF3 and the IFN­ß promoter induced by Sendai virus­mediated RLR­VISA signaling. HAUS8 increased the polyubiquitination of VISA, RIG­I and TBK1. Knockdown of HAUS8 inhibited the activation of the transcription factors IRF­3, NF­κB and the IFN­ß promoter triggered by Sendai virus. Collectively, these results demonstrated that HAUS8 may function as a positive regulator of RLR­VISA dependent antiviral signaling by targeting the VISA complex, providing a novel regulatory mechanism of antiviral responses.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Microtubule-Associated Proteins/genetics , Sendai virus/genetics , Virus Diseases/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-7/genetics , Interferon Type I/genetics , Interferon-beta/genetics , Intracellular Signaling Peptides and Proteins , Mitochondria , NF-kappa B/genetics , Sendai virus/pathogenicity , Signal Transduction/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 6/genetics , Ubiquitination , Virus Diseases/prevention & control , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...