Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 133
1.
BMC Infect Dis ; 24(1): 550, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824508

BACKGROUND: Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS: Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS: RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS: The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.


Influenza A Virus, H1N1 Subtype , Influenza, Human , Phylogeny , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/classification , China/epidemiology , Humans , Male , Animals , Influenza, Human/virology , Influenza, Human/epidemiology , Dogs , Madin Darby Canine Kidney Cells , Child , Swine , Whole Genome Sequencing , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Genome, Viral
2.
Article En | MEDLINE | ID: mdl-38789711

While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.

3.
Article En | MEDLINE | ID: mdl-38815737

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxins are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 h. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 h. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocytes by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.

4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674100

The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools capable of automatically learning molecular structural features from large-scale datasets, showing promising capabilities for the downstream prediction of molecular properties. However, the performance of pre-trained chemical language models in predicting ADRs, especially idiosyncratic ADRs induced by marketed drugs, remains largely unexplored. In this study, we propose MoLFormer-XL, a pre-trained model for encoding molecular features from canonical SMILES, in conjunction with a CNN-based model to predict drug-induced QT interval prolongation (DIQT), drug-induced teratogenicity (DIT), and drug-induced rhabdomyolysis (DIR). Our results demonstrate that the proposed model outperforms conventional models applied in previous studies for predicting DIQT, DIT, and DIR. Notably, an analysis of the learned linear attention maps highlights amines, alcohol, ethers, and aromatic halogen compounds as strongly associated with the three types of ADRs. These findings hold promise for enhancing drug discovery pipelines and reducing the drug attrition rate due to safety concerns.


Drug-Related Side Effects and Adverse Reactions , Humans , Deep Learning , Models, Chemical , Rhabdomyolysis/chemically induced , Long QT Syndrome/chemically induced
5.
Cancer Lett ; 592: 216906, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38649108

Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.


Bone Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/therapy , Animals
6.
J Hazard Mater ; 469: 133906, 2024 May 05.
Article En | MEDLINE | ID: mdl-38430590

The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.


Environmental Pollutants , Microbiota , Soil Pollutants , Environmental Pollutants/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Phenols/metabolism , Soil Pollutants/metabolism , Soil Microbiology
7.
Sci Rep ; 14(1): 7028, 2024 03 25.
Article En | MEDLINE | ID: mdl-38528062

Accurate indel calling plays an important role in precision medicine. A benchmarking indel set is essential for thoroughly evaluating the indel calling performance of bioinformatics pipelines. A reference sample with a set of known-positive variants was developed in the FDA-led Sequencing Quality Control Phase 2 (SEQC2) project, but the known indels in the known-positive set were limited. This project sought to provide an enriched set of known indels that would be more translationally relevant by focusing on additional cancer related regions. A thorough manual review process completed by 42 reviewers, two advisors, and a judging panel of three researchers significantly enriched the known indel set by an additional 516 indels. The extended benchmarking indel set has a large range of variant allele frequencies (VAFs), with 87% of them having a VAF below 20% in reference Sample A. The reference Sample A and the indel set can be used for comprehensive benchmarking of indel calling across a wider range of VAF values in the lower range. Indel length was also variable, but the majority were under 10 base pairs (bps). Most of the indels were within coding regions, with the remainder in the gene regulatory regions. Although high confidence can be derived from the robust study design and meticulous human review, this extensive indel set has not undergone orthogonal validation. The extended benchmarking indel set, along with the indels in the previously published known-positive set, was the truth set used to benchmark indel calling pipelines in a community challenge hosted on the precisionFDA platform. This benchmarking indel set and reference samples can be utilized for a comprehensive evaluation of indel calling pipelines. Additionally, the insights and solutions obtained during the manual review process can aid in improving the performance of these pipelines.


Benchmarking , High-Throughput Nucleotide Sequencing , Humans , Computational Biology , Quality Control , INDEL Mutation , Polymorphism, Single Nucleotide
8.
Chemosphere ; 355: 141788, 2024 May.
Article En | MEDLINE | ID: mdl-38548088

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Anti-Bacterial Agents , Norfloxacin , Porosity , Tetracycline , Adsorption , Carbon , Oxidants
9.
Water Res ; 254: 121350, 2024 May 01.
Article En | MEDLINE | ID: mdl-38402752

Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands.


Sulfamethoxazole , Wetlands , Sulfamethoxazole/chemistry , Nitrates , Anti-Bacterial Agents , Oxidation-Reduction , Iron , Organic Chemicals , Water
10.
Front Oncol ; 14: 1297140, 2024.
Article En | MEDLINE | ID: mdl-38380366

SMARCA4-deficient gastric carcinoma has been reported sporadically since 2016. Only 29 patients have been reported; nevertheless, it is aggressive and highly malignant with poor outcomes. It has an immunohistochemical phenotype showing loss of SMARCA4 expression and can be accompanied by codeletion of other switch/sucrose non-fermentable chromatin-remodeling complex subunits. Microscopically, it displays high-grade undifferentiated histological morphology with rhabdoid cell differentiation. Rarely does the tumor contain a purely or partly adenocarcinoma component. Here, we report two cases to demonstrate these unusual morphologies analyzed using morphological and immunohistochemical techniques. In addition, there is a lack of research on the classification of these morphologies. Therefore, our report will aid the diagnosis and classification of SMARCA4-deficient gastric carcinoma.

11.
Chin Med J (Engl) ; 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38403900

BACKGROUND: Clinical opportunistic screening is a cost-effective cancer screening modality. This study aimed to establish an easy-to-use diagnostic model serving as a risk stratification tool for identification of individuals with malignant gastric lesions for opportunistic screening. METHODS: We developed a questionnaire-based diagnostic model using a joint dataset including two clinical cohorts from northern and southern China. The cohorts consisted of 17,360 outpatients who had undergone upper gastrointestinal endoscopic examination in endoscopic clinics. The final model was derived based on unconditional logistic regression, and predictors were selected according to the Akaike information criterion. External validation was carried out with 32,614 participants from a community-based randomized controlled trial. RESULTS: This questionnaire-based diagnostic model for malignant gastric lesions had eight predictors, including advanced age, male gender, family history of gastric cancer, low body mass index, unexplained weight loss, consumption of leftover food, consumption of preserved food, and epigastric pain. This model showed high discriminative power in the development set with an area under the receiver operating characteristic curve (AUC) of 0.791 (95% confidence interval [CI]: 0.750-0.831). External validation of the model in the general population generated an AUC of 0.696 (95% CI: 0.570-0.822). This model showed an ideal ability for enriching prevalent malignant gastric lesions when applied to various scenarios. CONCLUSION: This easy-to-use questionnaire-based model for diagnosis of prevalent malignant gastric lesions may serve as an effective prescreening tool in clinical opportunistic screening for gastric cancer.

12.
J Trace Elem Med Biol ; 83: 127406, 2024 May.
Article En | MEDLINE | ID: mdl-38308912

BACKGROUND: The potential impact of environmental cadmium exposure on the prognosis of patients with rheumatoid arthritis (RA) remains unclear, despite its known association with various adverse health outcomes. METHODS: In this study, a total of 1285 RA patients were included in the National Health and Nutrition Examination Survey (NHANES) conducted between 2003 and 2016. The Cox regression model was employed to investigate the relationship between blood cadmium levels and the risk of all-cause mortality in RA patients. RESULTS: During a mean follow-up duration of 105.9 months, 341 patient deaths were recorded. After adjusting for multiple factors, elevated blood cadmium was strongly correlated with an increased risk of all-cause mortality in patients with RA. With one unit rise in natural logarithm-transformed blood cadmium concentrations, the risk of patient death increased by 107%. The adjusted hazard ratios for each quartile of blood cadmium demonstrated a significant upward trend (P < 0.001). A linear dose-response relationship of blood cadmium concentrations with all-cause mortality was also distinctive (P < 0.001). Consistent findings were ascertained when conducting stratified analyses by age, gender, race, education level, body mass index, smoking status, and drinking status. CONCLUSIONS: Elevated blood cadmium levels may serve as a risk factor for increased death risk in RA patients.


Arthritis, Rheumatoid , Cadmium , Adult , Humans , Nutrition Surveys , Cohort Studies , Environmental Exposure/adverse effects
13.
Nat Nanotechnol ; 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38351231

Fluorescence resonance energy transfer (FRET) reporters are commonly used in the final stages of nucleic acid amplification tests to indicate the presence of nucleic acid targets, where fluorescence is restored by nucleases that cleave the FRET reporters. However, the need for dual labelling and purification during manufacturing contributes to the high cost of FRET reporters. Here we demonstrate a low-cost silver nanocluster reporter that does not rely on FRET as the on/off switching mechanism, but rather on a cluster transformation process that leads to fluorescence color change upon nuclease digestion. Notably, a 90 nm red shift in emission is observed upon reporter cleavage, a result unattainable by a simple donor-quencher FRET reporter. Electrospray ionization-mass spectrometry results suggest that the stoichiometric change of the silver nanoclusters from Ag13 (in the intact DNA host) to Ag10 (in the fragments) is probably responsible for the emission colour change observed after reporter digestion. Our results demonstrate that DNA-templated silver nanocluster probes can be versatile reporters for detecting nuclease activities and provide insights into the interactions between nucleases and metallo-DNA nanomaterials.

14.
Opt Express ; 32(3): 3290-3307, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38297554

Multiplexed fluorescence detection has become increasingly important in the fields of biosensing and bioimaging. Although a variety of excitation/detection optical designs and fluorescence unmixing schemes have been proposed to allow for multiplexed imaging, rapid and reliable differentiation and quantification of multiple fluorescent species at each imaging pixel is still challenging. Here we present a pulsed interleaved excitation spectral fluorescence lifetime microscopic (PIE-sFLIM) system that can simultaneously image six fluorescent tags in live cells in a single hyperspectral snapshot. Using an alternating pulsed laser excitation scheme at two different wavelengths and a synchronized 16-channel time-resolved spectral detector, our PIE-sFLIM system can effectively excite multiple fluorophores and collect their emission over a broad spectrum for analysis. Combining our system with the advanced live-cell labeling techniques and the lifetime/spectral phasor analysis, our PIE-sFLIM approach can well unmix the fluorescence of six fluorophores acquired in a single measurement, thus improving the imaging speed in live-specimen investigation.


Diagnostic Imaging , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes
15.
Foods ; 13(3)2024 Jan 27.
Article En | MEDLINE | ID: mdl-38338550

Fermented soy foods can effectively improve the unpleasant odor of soybean and reduce its anti-nutritional factors while forming aromatic and bioactive compounds. However, a differential analysis of characteristic flavor and function among different fermented soy foods has yet to be conducted. In this study, a systematic comparison of different fermented soy foods was performed using E-nose, HS-SMPE-GC×GC-MS, bioactivity validation, and correlation analysis. The results showed that soy sauce and natto flavor profiles significantly differed from other products. Esters and alcohols were the main volatile substances in furu, broad bean paste, douchi, doujiang, and soy sauce, while pyrazine substances were mainly present in natto. Phenylacetaldehyde contributed to the sweet aroma of furu, while 1-octene-3-ol played a crucial role in the flavor formation of broad bean paste. 2,3-Butanediol and ethyl phenylacetate contributed fruity and honey-like aromas to douchi, doujiang, and soy sauce, respectively, while benzaldehyde played a vital role in the flavor synthesis of douchi. All six fermented soy foods demonstrated favorable antioxidative and antibacterial activities, although their efficacy varied significantly. This study lays the foundation for elucidating the mechanisms of flavor and functionality formation in fermented soy foods, which will help in the targeted development and optimization of these products.

16.
Environ Sci Technol ; 58(4): 2069-2077, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38237036

Earthworms accumulate organic pollutants to form earthworm tissue-bound residues (EBRs); however, the composition and fate of EBRs in soil remain largely unknown. Here, we investigated the fate of tetrabromobisphenol A (TBBPA)-derived EBRs in soil for 250 days using a 14C-radioactive isotope tracer and the geophagous earthworm Metaphire guillelmi. The EBRs of TBBPA in soil were rapidly transformed into nonextractable residues (NERs), mainly in the form of sequestered and ester-linked residues. After 250 days of incubation, 4.9% of the initially applied EBRs were mineralized and 69.3% were released to extractable residues containing TBBPA and its transformation products (TPs, generated mainly via debromination, O-methylation, and skeletal cleavage). Soil microbial activity and autolytic enzymes of earthworms jointly contributed to the release process. In their full-life period, the earthworms overall retained 24.1% TBBPA and its TPs in soil and thus prolonged the persistence of these pollutants. Our study explored, for the first time, the composition and fate of organic pollutant-derived EBRs in soil and indicated that the decomposition of earthworms may release pollutants and cause potential environmental risks of concern, which should be included in both environmental risk assessment and soil remediation using earthworms.


Environmental Pollutants , Oligochaeta , Polybrominated Biphenyls , Soil Pollutants , Animals , Soil/chemistry
17.
Acad Radiol ; 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38228455

RATIONALE AND OBJECTIVES: To investigate the effectiveness of combining split diffusion tensor imaging (DTI) measurements with split renal parenchymal volume (RPV) for assessing split renal functional impairment in patients with lupus nephritis (LN). MATERIALS AND METHODS: Seventy-four participants [48 LN patients and 26 healthy volunteers (HV)] were included in the study. All participant underwent conventional MR and DTI (b = 0, 400, and 600 s/mm2) examinations using a 3.0 T MRI scanner to determine the split renal DTI measurements and split RPV. In LN patients, renography glomerular filtration rate (rGFR) was measured using 99mTc-DTPA scintigraphy based on Gates' method, serving as the reference standard to categorize all split kidneys of LN patients into LN with mild impairment (LNm, n = 65 kidneys) and LN with moderate to severe (LNms, n = 31 kidneys) groups according to the threshold of 30 ml/min in spilt rGFR. All statistical analyses were performed using SPSS 25.0 and MedCalc 20.0 software packages. RESULTS: Only split medullary fractional anisotropy (FA) and the product of split medullary FA and RPV could distinguish pairwise subgroups among the HV and each LN subgroup (all p < 0.05). ROC curve analysis demonstrated that split medullary FA (AUC = 0.866) significantly outperformed other parameters in differentiating HV from LNm groups, while the product of split medullary FA and split RPV was superior in distinguishing LNm and LNms groups (AUC = 0.793) than other parameters. The combination of split medullary FA and split RPV showed best correlation with split rGFR (r = 0.534, p < 0.001). CONCLUSION: Split medullary FA, and its combination with split RPV, are valuable biomarkers for detecting early functional changes in renal alterations and predicting disease progression in patients with LN.

18.
Neural Netw ; 169: 154-164, 2024 Jan.
Article En | MEDLINE | ID: mdl-37890365

Generative models, such as Generative Adversarial Networks (GANs), have recently shown remarkable capabilities in various generation tasks. However, the success of these models heavily depends on the availability of a large-scale training dataset. When the size of the training dataset is limited, the quality and diversity of the generated results suffer from severe degradation. In this paper, we propose a novel approach, Reverse Contrastive Learning (RCL), to address the problem of high-quality and diverse image generation under few-shot settings. The success of RCL benefits from a two-sided, powerful regularization. Our proposed regularization is designed based on the correlation between generated samples, which can effectively utilize the latent feature information between different levels of samples. It does not require any auxiliary information or augmentation techniques. A series of qualitative and quantitative results show that our proposed method is superior to the existing State-Of-The-Art (SOTA) methods under the few-shot setting and is still competitive under the low-shot setting, showcasing the effectiveness of RCL. Code will be released upon acceptance at https://github.com/gouayao/RCL.


Machine Learning , Neural Networks, Computer
19.
Article En | MEDLINE | ID: mdl-38083593

Electromyography (EMG) signal based cross-subject gesture recognition methods reduce the influence of individual differences using transfer learning technology. These methods generally require calibration data collected from new subjects to adapt the pre-trained model to existing subjects. However, collecting calibration data is usually trivial and inconvenient for new subjects. This is currently a major obstacle to the daily use of hand gesture recognition based on EMG signals. To tackle the problem, we propose a novel dynamic domain generalization (DDG) method which is able to achieve accurate recognition on the hand gesture of new subjects without any calibration data. In order to extract more robust and adaptable features, a meta-adjuster is leveraged to generate a series of template coefficients to dynamically adjust dynamic network parameters. Specifically, two different kinds of templates are designed, in which the first one is different kinds of features, such as temporal features, spatial features, and spatial-temporal features, and the second one is different normalization layers. Meanwhile, a mix-style data augmentation method is introduced to make the meta-adjuster's training data more diversified. Experimental results on a public dataset verify that the proposed DDG outperforms the counterpart methods.


Algorithms , Gestures , Humans , Electromyography/methods , Pattern Recognition, Automated/methods , Recognition, Psychology
20.
Res Sq ; 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37961501

While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether arsenic metabolism in different trimesters was related to cord blood mtDNAcn alteration. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters using HPLC-ICPMS. We decided on cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each two-fold increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the 3rd trimester were related to 8.43% (95% CI: 1.13%, 16.26%) and 12.15% (95% CI:4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the 3rd trimester with mtDNAcn. These findings may prove the relationships between arsenic species and mitochondrial dysfunction.

...