Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Investig Med ; : 10815589241249991, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38715217

ABSTRACT

Patients with heart failure with reduced ejection fraction (HFrEF) are at risk for chronic kidney disease (CKD). Elevated levels of circulating biomarkers soluble urokinase plasminogen activator receptor (suPAR), galectin-3, soluble suppression of tumorigenicity 2 (ST2), and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) are associated with CKD progression and mortality. The predictive value of these biomarkers in a population with HFrEF and kidney disease is relatively unknown. We sought to determine whether these biomarkers were associated with longitudinal trajectory of estimated glomerular filtration rate (eGFR) in HFrEF and assess their association with mortality using a joint model to account for competing risks of ventricular assist device (VAD) implantation and heart transplantation. We included participants from the Registry Evaluation of Vital Information for Ventricular Assist Devices in Ambulatory Life with repeated eGFR measures over 2 years. Of 309 participants, mean age was 59 years, median eGFR 60 ml/min/1.73 m2, 45 participants died, 33 received VAD, and 25 received orthotopic heart transplantation. Higher baseline serum standardized suPAR (ß coefficient = -0.36 √(ml/min/1.73 m2), 95% confidence interval (-0.48 to -0.24), p < 0.001), standardized galectin-3 (-0.14 √(ml/min/1.73 m2) (-0.27 to -0.02), p = 0.02), and log NT-proBNP (-0.23 √(ml/min/1.73 m2) (-0.31 to -0.15), p < 0.001) were associated with eGFR decline. ST2 and log NT-proBNP were associated with mortality. Higher baseline suPAR, galectin-3, and NT-proBNP are associated with eGFR decline in patients with HFrEF. Only ST2 and NT-proBNP are associated with greater mortality after controlling for other factors including change in eGFR. These biomarkers may provide prognostic value for kidney disease progression in HFrEF and inform candidacy for advanced heart failure therapies.

5.
JACC Heart Fail ; 12(3): 508-520, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38099890

ABSTRACT

BACKGROUND: Individuals with acute decompensated heart failure (ADHF) have a varying response to diuretic therapy. Strategies for the early identification of low diuretic efficiency to inform decongestion therapies are lacking. OBJECTIVES: The authors sought to develop and externally validate a machine learning-based phenomapping approach and integer-based diuresis score to identify patients with low diuretic efficiency. METHODS: Participants with ADHF from ROSE-AHF, CARRESS-HF, and ATHENA-HF were pooled in the derivation cohort (n = 794). Multivariable finite-mixture model-based phenomapping was performed to identify phenogroups based on diuretic efficiency (urine output over the first 72 hours per total intravenous furosemide equivalent loop diuretic dose). Phenogroups were externally validated in other pooled ADHF trials (DOSE/ESCAPE). An integer-based diuresis score (BAN-ADHF score: blood urea nitrogen, creatinine, natriuretic peptide levels, atrial fibrillation, diastolic blood pressure, hypertension and home diuretic, and heart failure hospitalization) was developed and validated based on predictors of the diuretic efficiency phenogroups to estimate the probability of low diuretic efficiency using the pooled ADHF trials described earlier. The associations of the BAN-ADHF score with markers and symptoms of congestion, length of stay, in-hospital mortality, and global well-being were assessed using adjusted regression models. RESULTS: Clustering identified 3 phenogroups based on diuretic efficiency: phenogroup 1 (n = 370; 47%) had lower diuretic efficiency (median: 13.1 mL/mg; Q1-Q3: 7.7-19.4 mL/mg) than phenogroups 2 (n = 290; 37%) and 3 (n = 134; 17%) (median: 17.8 mL/mg; Q1-Q3: 10.8-26.1 mL/mg and median: 35.3 mL/mg; Q1-Q3: 17.5-49.0 mL/mg, respectively) (P < 0.001). The median urine output difference in response to 80 mg intravenous twice-daily furosemide between the lowest and highest diuretic efficiency group (phenogroup 1 vs 3) was 3,520 mL/d. The BAN-ADHF score demonstrated good model performance for predicting the lowest diuretic efficiency phenogroup membership (C-index: 0.92 in DOSE/ESCAPE validation cohort) that was superior to measures of kidney function (creatinine or blood urea nitrogen), natriuretic peptide levels, or home diuretic dose (DeLong P < 0.001 for all). Net urine output in response to 80 mg intravenous twice-daily furosemide among patients with a low vs high (5 vs 20) BAN-ADHF score was 2,650 vs 660 mL per 24 hours, respectively. Participants with higher BAN-ADHF scores had significantly lower global well-being, higher natriuretic peptide levels on discharge, a longer in-hospital stay, and a higher risk of in-hospital mortality in both derivation and validation cohorts. CONCLUSIONS: The authors developed and validated a phenomapping strategy and diuresis score for individuals with ADHF and differential response to diuretic therapy, which was associated with length of stay and mortality.


Subject(s)
Diuretics , Heart Failure , Humans , Diuretics/therapeutic use , Furosemide/therapeutic use , Creatinine , Natriuretic Peptides , Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL