Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
2.
Brain ; 146(10): 4055-4064, 2023 10 03.
Article En | MEDLINE | ID: mdl-37100087

Transmembrane protein 106B (TMEM106B) is a tightly regulated glycoprotein predominantly localized to endosomes and lysosomes. Genetic studies have implicated TMEM106B haplotypes in the development of multiple neurodegenerative diseases with the strongest effect in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), especially in progranulin (GRN) mutation carriers. Recently, cryo-electron microscopy studies showed that a C-terminal fragment (CTF) of TMEM106B (amino acid residues 120-254) forms amyloid fibrils in the brain of patients with FTLD-TDP, but also in brains with other neurodegenerative conditions and normal ageing brain. The functional implication of these fibrils and their relationship to the disease-associated TMEM106B haplotype remain unknown. We performed immunoblotting using a newly developed antibody to detect TMEM106B CTFs in the sarkosyl-insoluble fraction of post-mortem human brain tissue from patients with different proteinopathies (n = 64) as well as neuropathologically normal individuals (n = 10) and correlated the results with age and TMEM106B haplotype. We further compared the immunoblot results with immunohistochemical analyses performed in the same study population. Immunoblot analysis showed the expected ∼30 kDa band in the sarkosyl-insoluble fraction of frontal cortex tissue in at least some individuals with each of the conditions evaluated. Most patients with GRN mutations showed an intense band representing TMEM106B CTF, whereas in most neurologically normal individuals it was absent or much weaker. In the overall cohort, the presence of TMEM106B CTFs correlated strongly with both age (rs = 0.539, P < 0.001) and the presence of the TMEM106B risk haplotype (rs = 0.469, P < 0.001). Although there was a strong overall correlation between the results of immunoblot and immunohistochemistry (rs = 0.662, P < 0.001), 27 cases (37%) were found to have higher amounts of TMEM106B CTFs detected by immunohistochemistry, including most of the older individuals who were neuropathologically normal and individuals who carried two protective TMEM106B haplotypes. Our findings suggest that the formation of sarkosyl-insoluble TMEM106B CTFs is an age-related feature which is modified by TMEM106B haplotype, potentially underlying its disease-modifying effect. The discrepancies between immunoblot and immunohistochemistry in detecting TMEM106B pathology suggests the existence of multiple species of TMEM106B CTFs with possible biological relevance and disease implications.


Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Frontotemporal Dementia/pathology , Haplotypes , Cryoelectron Microscopy , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Frontotemporal Lobar Degeneration/pathology , Brain/pathology
4.
Acta Neuropathol ; 145(3): 285-302, 2023 03.
Article En | MEDLINE | ID: mdl-36527486

Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.


Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Neurodegenerative Diseases , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins , Neurodegenerative Diseases/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Aging/genetics
5.
Genet Med ; 24(7): 1583-1591, 2022 07.
Article En | MEDLINE | ID: mdl-35499524

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Phosphoproteins , Transcription Factors , Gene Expression Regulation , Heterozygote , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phosphoproteins/genetics , Transcription Factors/genetics
6.
Cell ; 185(8): 1346-1355.e15, 2022 04 14.
Article En | MEDLINE | ID: mdl-35247328

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.


Frontotemporal Dementia , Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Amyloid , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
7.
Acta Neuropathol Commun ; 9(1): 25, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579389

Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are clinically, pathologically and etiologically disorders embedded in the Lewy body disease (LBD) continuum, characterized by neuronal α-synuclein pathology. Rare homozygous and compound heterozygous premature termination codon (PTC) mutations in the Vacuolar Protein Sorting 13 homolog C gene (VPS13C) are associated with early-onset recessive PD. We observed in two siblings with early-onset age (< 45) and autopsy confirmed DLB, compound heterozygous missense mutations in VPS13C, p.Trp395Cys and p.Ala444Pro, inherited from their healthy parents in a recessive manner. In lymphoblast cells of the index patient, the missense mutations reduced VPS13C expression by 90% (p = 0.0002). Subsequent, we performed targeted resequencing of VPS13C in 844 LBD patients and 664 control persons. Using the optimized sequence kernel association test, we obtained a significant association (p = 0.0233) of rare VPS13C genetic variants (minor allele frequency ≤ 1%) with LBD. Among the LBD patients, we identified one patient with homozygous missense mutations and three with compound heterozygous missense mutations in trans position, indicative for recessive inheritance. In four patients with compound heterozygous mutations, we were unable to determine trans position. The frequency of LBD patient carriers of proven recessive compound heterozygous missense mutations is 0.59% (5/844). In autopsy brain tissue of two unrelated LBD patients, the recessive compound heterozygous missense mutations reduced VPS13C expression. Overexpressing of wild type or mutant VPS13C in HeLa or SH-SY5Y cells, demonstrated that the mutations p.Trp395Cys or p.Ala444Pro, abolish the endosomal/lysosomal localization of VPS13C. Overall, our data indicate that rare missense mutations in VPS13C are associated with LBD and recessive compound heterozygous missense mutations might have variable effects on the expression and functioning of VPS13C. We conclude that comparable to the recessive inherited PTC mutations in VPS13C, combinations of rare recessive compound heterozygous missense mutations reduce VPS13C expression and contribute to increased risk of LBD.


Heterozygote , Homozygote , Lewy Body Disease/genetics , Mutation, Missense , Parkinson Disease/genetics , Proteins/genetics , Proteins/metabolism , Aged , Autopsy , Brain/pathology , Female , Humans , Lewy Body Disease/pathology , Male , Middle Aged , Parkinson Disease/pathology , Phenotype , Whole Genome Sequencing
8.
Acta Neuropathol ; 139(6): 1001-1024, 2020 06.
Article En | MEDLINE | ID: mdl-32172343

Parkinson's disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.97%; 1/226 DLB patients, 0.44%). We established that ATP10B encodes a late endo-lysosomal lipid flippase that translocates the lipids glucosylceramide (GluCer) and phosphatidylcholine (PC) towards the cytosolic membrane leaflet. The PD associated ATP10B mutants are catalytically inactive and fail to provide cellular protection against the environmental PD risk factors rotenone and manganese. In isolated cortical neurons, loss of ATP10B leads to general lysosomal dysfunction and cell death. Impaired lysosomal functionality and integrity is well known to be implicated in PD pathology and linked to multiple causal PD genes and genetic risk factors. Our results indicate that recessive loss of function mutations in ATP10B increase risk for PD by disturbed lysosomal export of GluCer and PC. Both ATP10B and glucocerebrosidase 1, encoded by the PD risk gene GBA1, reduce lysosomal GluCer levels, emerging lysosomal GluCer accumulation as a potential PD driver.


Adenosine Triphosphatases/genetics , Glucosylceramides/metabolism , Lysosomes/metabolism , Membrane Transport Proteins/genetics , Mutation/genetics , Parkinson Disease/genetics , Aged , Aged, 80 and over , Dopaminergic Neurons/metabolism , Female , Glucosylceramidase/genetics , Glucosylceramides/genetics , Humans , Lewy Bodies/pathology , Lysosomes/genetics , Male , Middle Aged , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism
9.
Acta Neuropathol ; 137(6): 901-918, 2019 06.
Article En | MEDLINE | ID: mdl-30874922

Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.


Chromosome Inversion , Dementia/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Mutation , Nerve Tissue Proteins/deficiency , Neurodegenerative Diseases/genetics , Neurons/physiology , Potassium Channels/deficiency , Action Potentials/physiology , Adult , Aged , Chromosomes, Human, Pair 7/genetics , Dementia/physiopathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Female , Genes, Dominant , Homeostasis , Humans , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/physiopathology , Pedigree , Penetrance , Polymorphism, Single Nucleotide , Potassium Channels/genetics , Potassium Channels/physiology , Protein Stability , Protein Transport , Synaptic Transmission , Whole Genome Sequencing
10.
Neurobiol Aging ; 62: 245.e1-245.e7, 2018 02.
Article En | MEDLINE | ID: mdl-29146049

TANK-binding kinase 1 (TBK1) loss-of-function (LoF) mutations are known to cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), often combined with memory deficits early in the disease course. We performed targeted resequencing of TBK1 in 1253 early onset Alzheimer's disease (EOAD) patients from 8 European countries to investigate whether pathogenic TBK1 mutations are enriched among patients with clinical diagnosis of EOAD. Variant frequencies were compared against 2117 origin-matched controls. We identified only 1 LoF mutation (p.Thr79del) in a patient clinically diagnosed with Alzheimer's disease and a positive family history of ALS. We did not observe enrichment of rare variants in EOAD patients compared to controls, nor of rare variants affecting NFκB induction. Of 3 common coding variants, rs7486100 showed evidence of association (OR 1.46 [95% CI 1.13-1.9]; p-value 0.01). Homozygous carriers of the risk allele showed reduced expression of TBK1 (p-value 0.03). Our findings are not indicative of a significant role for TBK1 mutations in EOAD. The association between common variants in TBK1, disease risk and reduced TBK1 expression warrants follow-up in FTD/ALS cohorts.


Alzheimer Disease/genetics , Genetic Association Studies , Genetic Variation/genetics , Loss of Function Mutation/genetics , Protein Serine-Threonine Kinases/genetics , Aged , Alleles , Amyotrophic Lateral Sclerosis/genetics , Cohort Studies , Europe , Female , Frontotemporal Dementia/genetics , Heterozygote , Homozygote , Humans , Male , Middle Aged , Risk
11.
Acta Neuropathol ; 134(3): 475-487, 2017 Sep.
Article En | MEDLINE | ID: mdl-28447221

Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.


ATP-Binding Cassette Transporters/genetics , Alzheimer Disease/genetics , Genetic Predisposition to Disease , Mutation , Polymorphism, Single Nucleotide , Adult , Age of Onset , Aged , Female , Genetic Association Studies , Humans , Male , Middle Aged
12.
Hum Mutat ; 38(3): 297-309, 2017 03.
Article En | MEDLINE | ID: mdl-28008748

We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.


Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Protein Serine-Threonine Kinases/genetics , White People/genetics , Aged , Alleles , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , Case-Control Studies , Cohort Studies , Enzyme Activation , Female , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/epidemiology , Genetic Association Studies , Heterozygote , Humans , Male , Middle Aged , Mutation , NF-kappa B/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Sequence Deletion
13.
Neurology ; 85(24): 2116-25, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26581300

OBJECTIVE: To assess the genetic contribution of TBK1, a gene implicated in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and FTD-ALS, in Belgian FTD and ALS patient cohorts containing a significant part of genetically unresolved patients. METHODS: We sequenced TBK1 in a hospital-based cohort of 482 unrelated patients with FTD and FTD-ALS and 147 patients with ALS and an extended Belgian FTD-ALS family DR158. We followed up mutation carriers by segregation studies, transcript and protein expression analysis, and immunohistochemistry. RESULTS: We identified 11 patients carrying a loss-of-function (LOF) mutation resulting in an overall mutation frequency of 1.7% (11/629), 1.1% in patients with FTD (5/460), 3.4% in patients with ALS (5/147), and 4.5% in patients with FTD-ALS (1/22). We found 1 LOF mutation, p.Glu643del, in 6 unrelated patients segregating with disease in family DR158. Of 2 mutation carriers, brain and spinal cord was characterized by TDP-43-positive pathology. The LOF mutations including the p.Glu643del mutation led to loss of transcript or protein in blood and brain. CONCLUSIONS: TBK1 LOF mutations are the third most frequent cause of clinical FTD in the Belgian clinically based patient cohort, after C9orf72 and GRN, and the second most common cause of clinical ALS after C9orf72. These findings reinforce that FTD and ALS belong to the same disease continuum.


Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Mutation/genetics , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Adult , Aged , Aged, 80 and over , Belgium/epidemiology , Cohort Studies , Female , Frontotemporal Dementia/epidemiology , Humans , Male , Middle Aged , Pedigree
14.
Mol Neurodegener ; 10: 30, 2015 Jul 16.
Article En | MEDLINE | ID: mdl-26179372

BACKGROUND: The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the ß-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. RESULTS: Three patient-specific CLU mutations in the ß-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. CONCLUSIONS: Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and ß-chain of CLU.


Alzheimer Disease/genetics , Clusterin/metabolism , Mutation, Missense , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Alzheimer Disease/physiopathology , Amino Acid Substitution , Belgium/epidemiology , Biological Transport , Clusterin/genetics , Cystine/chemistry , Dimerization , Endoplasmic Reticulum/metabolism , Exons/genetics , Female , Frameshift Mutation , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Protein Conformation , Recombinant Fusion Proteins/metabolism , Transduction, Genetic , Transfection
15.
Biochim Biophys Acta ; 1817(10): 1925-36, 2012 Oct.
Article En | MEDLINE | ID: mdl-22430089

Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Electron Transport Complex I/metabolism , Embryo, Mammalian/enzymology , Fibroblasts/enzymology , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Cell Line, Transformed , Electron Transport Complex I/genetics , Embryo, Mammalian/cytology , Enzyme Stability/physiology , Fibroblasts/cytology , Gene Deletion , Humans , Lactic Acid/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , NAD/genetics , NAD/metabolism , NADP/genetics , NADP/metabolism , Phosphorylation/physiology , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism
16.
J Cell Sci ; 124(Pt 7): 1115-25, 2011 Apr 01.
Article En | MEDLINE | ID: mdl-21385841

Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca(2+)) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca(2+) by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca(2+) extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions.


Calcium/metabolism , Energy Metabolism , Mitochondria/metabolism , Parkinson Disease/enzymology , Protein Kinases/deficiency , Adenosine Triphosphate/metabolism , Animals , Disease Models, Animal , Female , Gene Knockdown Techniques , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology , Mitochondria/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism
17.
J Parkinsons Dis ; 1(3): 229-51, 2011.
Article En | MEDLINE | ID: mdl-23939304

Parkinson's disease is a common neurodegenerative disorder whose aetiology is not yet fully understood. In the past ten years, the discovery of genes linked to hereditary forms of the disease has impelled the development of animal models. These should lead to the identification of novel pathways that provide insight into the functionality of the proteins involved and the pathogenesis of the sporadic forms of the disease. In particular, loss-of-function mutations in the parkin and PINK1 (phosphatase and tensin homolog (PTEN)-induced kinase 1) genes account for most of the cases of familial autosomal recessive parkinsonism. Both parkin and PINK1 knockout rodent models are now available, which display an overall mild phenotype consisting of a mitochondrial dysfunction together with changes in dopamine metabolism and oxidative stress. However, up till now these models fail to reproduce the main hallmarks of Parkinson's disease: the dopaminergic cell loss in the substantia nigra and the presence of cytoplasmic inclusions, named Lewy bodies, in the remaining dopaminergic neurons. We here review the most important knockout and knockdown rodent models generated so far for these two recessive Parkinson's disease-causing genes. We critically feature their main characteristics and their impact on the research field, and propose some future directions for the study and modelling of the loss of function of parkin and PINK1 in rodents.


Disease Models, Animal , Parkinson Disease/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Mice , Mice, Knockout , Mutation , Parkinson Disease/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics
...